3-μεθυλοπεντάνιο

χημική ένωση

Το 3-μεθυλοπεντάνιο είναι ένα διαλκαδισμένο αλκάνιο δηλαδή κορεσμένος υδρογονάνθρακας και πιο συγκεκριμένα ένα από τα ισομερή εξάνια. Το 3-μεθυλοπεντάνιο έχει μοριακό τύπο C6H14 και ημισυντακτικό τύπο CH3CH2CH(CH3)CH2CH3.

3-μεθυλοπεντάνιο
Γενικά
Όνομα IUPAC 3-μεθυλοπεντάνιο
Χημικά αναγνωριστικά
Χημικός τύπος C6H14
Μοριακή μάζα 86,18 amu
Σύντομος
συντακτικός τύπος
CH3CH2CH(CH3)CH2CH3
Συντομογραφίες sBuΕτ
Αριθμός CAS 96-14-0
SMILES CCC(C)CC
Ισομέρεια
Ισομερή θέσης 4
εξάνιο
2-μεθυλοπεντάνιο
2,2-διμεθυλοβουτάνιο
2,3-διμεθυλοβουτάνιο
Φυσικές ιδιότητες
Σημείο τήξης -118 °C
Σημείο βρασμού 64 °C
Εμφάνιση Άχρωμο υγρό
Χημικές ιδιότητες
Βαθμός οκτανίου 74,3
Βαθμός κετανίου 30
Επικινδυνότητα
Εξαιρετικά εύφλεκτο (F+), Επιβλαβές (Xn), Τοξικό για τους υδρόβιους οργανισμούς (N)
Φράσεις κινδύνου 12, 51/53, 65, 66, 67
Φράσεις ασφαλείας 2, 9, 16, 29, 33, 61, 62
Εκτός αν σημειώνεται διαφορετικά, τα δεδομένα αφορούν υλικά υπό κανονικές συνθήκες περιβάλλοντος (25°C, 100 kPa).

Ονοματολογία Επεξεργασία

Η ονομασία «3-μεθυλοπεντάνιο» από την ονοματολογία κατά IUPAC. Συγκεκριμένα, το αρχικό πρόθεμα «μεθυλο-» δηλώνει την παρουσία διακλάδωσης ενός (1) ατόμου άνθρακα και συγκεκριμένα στο άτομο άνθρακα #3, όπως δηλώνει ο αρχικός αριθμός θέσης, το τμήμα «πεντ-» δηλώνει την παρουσία πέντε (5) ατόμων άνθρακα στην κύρια ανθρακική αλυσίδα της ένωσης, το ενδιάμεσο «-αν-» δείχνει την παρουσία μόνο απλών δεσμών μεταξύ ατόμων άνθρακα στο μόριο και η κατάληξη «-ιο» φανερώνει ότι δεν περιέχει χαρακτηριστικές ομάδες, δηλαδή ότι είναι υδρογονάνθρακας.

Δομή Επεξεργασία

Το μόριό του περιέχει έξι (6) άτομα άνθρακα, τρία (3) από τα οποία είναι πρωτοταγή,[1] δύο (2) δευτεροταγή[2] και ένα (1) τριτοταγές[3]. Περιέχει, ακόμη, δεκατέσσερα (14) άτομα υδρογόνου. Οι δεσμοί C-Η που σχηματίζονται είναι ελαφρά πολωμένοι (~3%) ομοιοπολικοί τύπου σ (2sp3-1s), με μήκος 108,7 pm. Ο δεσμός C-C είναι ομοιοπολικός τύπου σ (2sp3-2sp3), με μήκος 154 pm. Οι δε γωνίες   είναι περίπου 109° 28΄.

Δεσμοί[4]
Δεσμός τύπος δεσμού ηλεκτρονική δομή Μήκος δεσμού Ιονισμός
C-H σ 2sp3-1s 109 pm 3% C- H+
C-C σ 2sp3-2sp3 154 pm
Κατανομή φορτίων
σε ουδέτερο μόριο
C#1,#5,#1' -0,09
C#2,#4 -0,06
C#3 -0,03
H +0,03

Παραγωγή Επεξεργασία

Απομόνωση από φυσικές και βιομηχανικές πηγές Επεξεργασία

  1. Απομονώνεται από το πετρέλαιο.
  2. Απομονώνεται από μείγματα που προκύπτουν από πυρόλυση βαρύτερων προϊόντων διύλισης πετρελαίου ή και πολυμερών υδρογονανθράκων.

Παρασκευή με αντιδράσεις σύνθεσης: Από πρώτες ύλες με μικρότερη ανθρακική αλυσίδα Επεξεργασία

1. Δομικά το 3-μεθυλοπεντάνιο αποτελείται από δυο μέρη: δευτεροταγές βουτύλιο [CH3CH2CH(CH3)] και αιθύλιο (CH3CH2). Επομένως, ο απλούστερος τρόπος παρασκευής χημικά καθαρού 3-μεθυλοπεντάνιου είναι η αντίδραση ζεύγους 2-αλοβουτανίου - αιθυλολιθίου ή αντιστοίχως δευτεροταγούς βουτυλολιθίου - αλαιθανίου:[5]

 
 
ή
 
 

2. Αν επιχειρηθεί η ανάλογη αντίδραση Βουρτζ (Wurtz) το αποτέλεσμα είναι ένα μείγμα προϊόντων, που συμπεριλαμβάνουν, εκτός του 3-μεθυλοπεντανίου, αιθάνιο και 3,4-διμεθυλεξάνιο[6]. Η αντίδραση είναι ασύμφορη σε σύγκριση με την προηγούμενη, αλλά τα προϊόντα αυτά διαχωρίζονται σχετικά εύκολα με απόσταξη: Το βαρύτερο, το 3,4-διμεθυλοεξάνιο είναι υγρό (σ.ζ.: 164 °C)[7] στις κανονικές συνθήκες περιβάλλοντος. Το ζητούμενο (εδώ) 3-μεθυλοπεντάνιο είναι επίσης υγρό, αλλά πολύ πτητικότερο (σ.ζ.: 64 °C), ενώ τέλος το βουτάνιο είναι αέριο εύκολα υγροποιήσιμο με σχετικά μικρή ψύξη ή και με συμπίεση (σ.ζ.: -0,5 °C).

Παρασκευή με αντιδράσεις χωρίς αλλαγή ανθρακικής αλυσίδας Επεξεργασία

Με αναγωγή αλογονούχων ενώσεων Επεξεργασία

1. Με «υδρογόνο εν τω γενάσθαι», δηλαδή μέταλλο + οξύ:[8]

 
ή
 
ή
 
ή
 

2. Με LiAlH4 ή NaBH4:[9]

 
ή
 
ή
 
ή
 

3. Με αναγωγή των αντίστοιχων ιωδαλκανίων από HI:[10]

 
ή
 
ή
 
ή
 

4. Με αναγωγή των κατάλληλων αλαλκανίων από σιλάνιο, παρουσία τριφθοριούχου βορίου παράγεται βουτάνιo:[11]

 
ή
 
ή
 
ή
 

5. Αναγωγή των κατάλληλων αλκυλαλογονιδίων από ένα αλκυλοκασσιτεράνιο. Π.χ.:[12]

 
ή
 
ή
 
ή
 

6. Με αναγωγή από ιδιαίτερα ηλεκτροθετικά μέταλλα, όπως αλκάλια ή αλκαλικές γαίες, και στη συνέχεια υδρόλυση των παραγόμενων οργανομεταλλικών ενώσεων:

1. Με χρήση Li:[13]

 
 
ή
 
 
ή
 
 
ή
 
 

2. Με χρήση Mg:[14]

 
 
ή
 
 
ή
 
 
ή
 
 

Με υδρογόνωση ακόρεστων υδρογονανθράκων Επεξεργασία

1. Από 3-μεθυλο-1-πεντένιο:[15]

 

2. Από 3-μεθυλο-2-πεντένιο:[15]

 

3. Από 2-αιθυλο-1-βουτένιο:[15]

 

4. Από 3-μεθυλο-1,2-πενταδιένιο:[15]

 

5. Από 3-μεθυλο-1,3-πενταδιένιο:[15]

 

6. Από 3-μεθυλο-1,4-πενταδιένιο:[15]

 

7. Από 3-μεθυλοπεντίνιο-1:[16]

 

8. Από 3-μεθυλο-1,2,4-πεντατριένιο:[15]

 

9. Από 3-μεθυλο-4-πεντεν-2-ίνιο:[15][16]

 

10. Από 3-μεθυλο-4-πεντεν-1-ίνιο:[15][16]

 

11. Από μεθυλοπενταδιενίνιο:[15][16]

 

12. Από μεθυλοπενταδιίνιο:[16]

 

Με αναγωγή οξυγονούχων ενώσεων Επεξεργασία

1. Με αναγωγή κατάλληλων αλδεϋδών - Αντίδραση Wolf-Kishner:[17]

1. Από 3-μεθυλοπεντανάλη:

 

2. Από αιθυλοβουτανάλη:

 

2. Με αναγωγή κατάλληλων κετονών - Αντίδραση Clemmensen[18]::

1. Από 3-μεθυλοπεντανόνη:

 

Με αναγωγή θειούχων ενώσεων Επεξεργασία

1. Με αναγωγή των κατάλληλων θειολών μπορεί να παραχθεί 3-μεθυλοπεντάνιο. Π.χ. από την αναγωγή της 3-μεθυλο-1-πεντανοθειόλης (μέθοδος Raney):[19]

 

2. Με αναγωγή των κατάλληλων θειεστέρων μπορεί να παραχθεί 3-μεθυλοπεντάνιο.. Π.χ. από την αναγωγή του δι(3-μεθυλοπεντυλο)θειαιθέρα (μέθοδος Raney):[19]

 

Παρασκευή με αντιδράσεις αποσύνθεσης με μείωση του μήκους της ανθρακικής αλυσίδας Επεξεργασία

 
ή
 
ή
 
ή
 

Φυσικές ιδιότητες και ισομερή Επεξεργασία

Το 3-μεθυλοπεντάνιο είναι άχρωμο υγρό με ελαφριά χαρακτηριστική οσμή. Ανήκει στην οικογένεια των αλκανίων. Με βάση το χημικό τύπο του (C6H12) προκύπτει ότι η ένωση σχηματίζει τέσσερα (4) ισομερή και συγκεκριμένα τα ακόλουθα:

  1. Εξάνιο: CH3(CH2)4CH3
  2. 2-μεθυλοπεντάνιο (ισοεξάνιο): CH3CH2CH2CH(CH3)2
  3. 2,2-διμεθυλοβουτάνιο (νεοεξάνιο): CH3CH2C(CH3)3
  4. 2,3-διμεθυλοβουτάνιο: (CH3)2CHCH(CH3)2
Συντακτικός τύπος
Δομή
Όνομα IUPAC
(ελληνική μορφή)
Όνομα
Μοριακό
Βάρος
Σημείο ζέσεως
(°C, 1 atm)
Βαθμός οκτανίου Βαθμός κετανίου
  κ-εξάνιο
εξάνιο
86,18 69 26 42
  2-μεθυλοπεντάνιο
ισοεξάνιο
58,12 60 73,5 23
  3-μεθυλοπεντάνιο 58,12 64 74,3 30
  2,2-διμεθυλοβουτάνιο
νεοεξάνιο
58,12 49,73 93,4 24,4
  2,3-διμεθυλοβουτάνιο 58,12 57,9 94,3

Χημικές ιδιότητες Επεξεργασία

Οξείδωση Επεξεργασία

1. Τέλεια καύση: Όπως όλα τα αλκάνια, το 3-μεθυλοπεντάνιο με περίσσεια οξυγόνου καίγεται προς διοξείδιο του άνθρακα και νερό:[21]

 

  • Αν και η αντίδραση είναι μια έντονα εξώθερμη δεν συμβαίνει σε μέτριες θερμοκρασίες, γιατί για την έναρξή της πρέπει να υπερπηδηθεί πρώτα το εμπόδιο της διάσπασης των δεσμών C-C,[22] των δεσμών C-H[23] και των δεσμών (Ο=Ο)[24] του O2:

2. Παραγωγή υδραερίου:

 

3. Καταλυτική οξείδωση κυρίως προς 3-μεθυλο-3-πεντανόλη:

 

4. Οξείδωση με υπερμαγγανικό κάλιο προς 3-μεθυλο-3-πεντανόλη:

 

5. Οξείδωση με διοξιράνιο προς 3-μεθυλο-3-πεντανόλη:

Αλογόνωση[25] Επεξεργασία

 

  • Δραστικότητα των X2: F2 > Cl2 > Br2 > Ι2.
  • όπου 0<a,b,c,d<1, a + b + c + d = 0, διαφέρουν ανάλογα με το αλογόνο:
  • Τα F και Cl είναι πιο δραστικά και λιγότερο εκλεκτικά. Η αναλογία των αλοπεντανίων τους εξαρτάται κυρίως πό τη στατιστική αναλογία των προς αντικατάσταση ατόμων H. Ειδικά για το χλώριο θα έχουμε:
Δηλαδή το μείγμα που προκύπτει είναι: 20,5% 3-μεθυλο-1-χλωροπεντάνιο, 52,1% 3-μεθυλο-2-χλωροπεντάνιο, 17,1% 3-μεθυλο-3-χλωροπεντάνιο και 10,3% 2-αιθυλο-1-χλωροβουτάνιο.
  • Τα Br και I είναι πιο εκλεκτικά και λιγότερο δραστικά. Η αναλογία των αλοπεντανίων μεταβάλλεται δραστικά προς όφελος του τριτοταγούς 3-αλο-2-μεθυλοπεντανίου. Ειδικά για το βρώμιο θα έχουμε:
Δηλαδή το μείγμα που προκύπτει είναι: 3‰ 1-βρωμο-3-μεθυλοπεντάνιο, 16,9% 2-βρωμο-3-μεθυλοπεντάνιο, 82,6% 3-βρωμο-3-μεθυλοπεντάνιο και 1‰ 2-αιθυλο-1-βρωμο-βουτάνιο.
Ανάλυση του μηχανισμού της χλωρίωσης του CH3CH2CH(CH3)CH2CH3:
1. Έναρξη: Παράγονται ελεύθερες ρίζες.

 

  • Η απαιτούμενη ενέργεια προέρχεται από το υπεριώδες φως (UV) ή θερμότητα (Δ).
2. Διάδοση: Καταναλώνονται οι παλιές ελεύθερες ρίζες, σχηματίζοντας νέες.

  [26]
 
 
 
 

3. Τερματισμός: Καταναλώνονται μεταξύ τους οι ελεύθερες ρίζες, κατά τη στατιστικά σπάνια περίπτωση της συνάντησής τους.

 
 
 
 
 
 
 
  [27]
 

  • Είναι όμως πρακτικά δύσκολο να σταματήσει η αντίδραση στην παραγωγή μονοααλογονιδίων.
  • Αν χρησιμοποιηθούν ισομοριακές ποσότητες CH3CH2CH(CH3)CH2CH3 και Χ2 θα παραχθεί μείγμα όλων των αλογονοπαραγώγων του CH3CH2CH(CH3)CH2CH3.
  • Αν όμως χρησιμοποιηθει περίσσεια CH3CH2CH(CH3)CH2CH3, τότε η απόδοση τωμ μονοπαραγώγων αυξάνεται πολύ, λόγω της αύξησης της στατιστική πιθανότητας συνάντισης CH3CH2CH(CH3)CH2CH3(CH3)2 με X. σε σχέση με την πιθανότητα συνάντισης μονοπαραγώγου και X., που μπορεί να οδηγήσει στην παραγωγή των υπόλοιπων X-παραγώγων.

Παρεμβολή καρβενίων Επεξεργασία

  • Τα καρβένια (π.χ. [:CH2]) μπορούν παρεμβληθούν στους δεσμούς C-H. Π.χ. έχουμε:[28]
  • Η αντίδραση είναι ελάχιστα εκλεκτική και αυτό σημαίνει ότι κατά προσέγγιση έχουμε;

 

  1. Παρεμβολή στους έξι (6) δεσμούς 1,5-CH2-H: 6
  2. Παρεμβολή στους τέσσρεις (4) δεσμούς 2,4-CH-H: 4.
  3. Παρεμβολή στο δεσμό C-H: 1.
  4. Παρεμβολή στους τρεις (3) δεσμούς 1'-CH2-H): 4.

Προκύπτει επομένως μείγμα 3-μεθυλεξάνιου (~43%), 2,3-διμεθυλοπεντάνιου (~29%), 3,3-διμεθυλοπεντάνιο (~7%) και αιθυλοπεντάνιου (-29%).

Νίτρωση Επεξεργασία

  • Αντιδρά με ατμούς HNO3 στην αέρια φάση:[29]

 

όπου 0<a,b,c,d<1, a + b + c + d = 1.

Προσθήκη σε πολλαπλούς δεσμούς Επεξεργασία

Το 3-μεθυλοπεντάνιο μπορεί να δώσει αντιδράσεις προσθήκης σε πολλαπλούς δεσμούς κατά την έννοια (CH3CH2)2Cδ-(CH3)-Hδ+. Π.χ.:[30]

 

Καταλυτική ισομερείωση Επεξεργασία

To 3-μεθυλοπεντάνιο μπορεί να υποστεί καταλυτική ισομερείωση προς εξάνιο, 2-μεθυλοπεντάνιο, 2,3-διμεθυλοβουτάνιο και 2,3-διμεθυλοβουτάνιο:

 

Αναφορές και σημειώσεις Επεξεργασία

  1. Άτομο C ενωμένο με ένα (1) άλλο άτομο C.
  2. Άτομο C ενωμένο με δύο (2) άλλα άτομα C.
  3. Άτομο C ενωμένο με τρία (3) άλλα άτομα C.
  4. Τα δεδομένα προέρχονται εν μέρει από το «Table of periodic properties of thw Ellements», Sagrent-Welch Scientidic Company και Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, Σελ. 34.
  5. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.5
  6. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 152, §6.2.2β, R = CH3CH2, R' = CH3CH2CH2CHCH3
  7. [1]:Google Βιβλία:Chemical properties handbook: physical, thermodynamic, environmental ... Από τον Carl L. Yaws
  8. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 152, §6.2.1β., με R = CH3CH2CH(CH3)CH2CH2 ή CH3CH2CH2CH(CH3)CHCH3 ή CH3CH2C(CH3)CH2CH3 ή (CH3CH2)2CΗCH2
  9. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, §6.2.1α., με R = CH3CH2CH(CH3)CH2CH2 ή CH3CH2CH2CH(CH3)CHCH3 ή CH3CH2C(CH3)CH2CH3 ή (CH3CH2)2CΗCH2
  10. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, σελ.14, §1.1
  11. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, σελ. 291-293, §19.1.
  12. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, Σελ. 42, §4.3.
  13. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, σελ.80-82, §5.1-5.2
  14. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 152, §6.2.4α., με R = CH3CH2CH(CH3)CH2CH2 ή CH3CH2CH2CH(CH3)CHCH3 ή CH3CH2C(CH3)CH2CH3 ή (CH3CH2)2CΗCH2
  15. 15,00 15,01 15,02 15,03 15,04 15,05 15,06 15,07 15,08 15,09 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 152, §6.2.5.
  16. 16,0 16,1 16,2 16,3 16,4 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 158, §6.9.4α.
  17. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 152, §6.7.6β.
  18. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 152, §6.7.6α, R = CH3, R' = CH3CH2CH2CH(CH3)2
  19. 19,0 19,1 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.269, §11.6B7.
  20. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 152, §6.2.3α., με R = CH3CH(CH3)CH2CH2 ή CH3CH2CH(CH3)CHCH3 ή CH3CH2C(CH3)CH2CH3 ή (CH3CH2)2CHCH3
  21. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 155, §6.7.1, v = 6 και μετατροπή μονάδας ενέργειας σε kJ.
  22. ΔHC-C= +347 kJ/mol
  23. ΔHC-H = +415 kJ/mol
  24. ΔHO-O=+146 kJ/mol
  25. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 152, §6.7.1β., με R = CH3CH2CH(CH3)CH2CH2 ή CH3CH2CH2CH(CH3)CHCH3 ή CH3CH2C(CH3)CH2CH3 ή (CH3CH2)2CHCH2
  26. καθοριστικό ταχύτητας
  27. Δεν πραγματοποιείται λόγω στερεοχημικής παρεμπόδισης.
  28. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 155, §6.7.3, R = CH3CH2CH(CH3)CH2CH2 ή CH3CH2CH2CH(CH3)CHCH3 ή CH3CH2C(CH3)CH2CH3 ή (CH3CH2)2CHCH2.
  29. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 244 , §10.3.2, R = CH3CH2CH(CH3)CH2CH2 ή CH3CH2CH2CH(CH3)CHCH3 ή CH3CH2C(CH3)CH2CH3 ή (CH3CH2)2CHCH2.
  30. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, σελ. 85, §6.3.

Πηγές Επεξεργασία

  • Η σελίδα της Ε.Ε. για την ταξινόμηση και την επισήμανση των επικίνδυνων ουσιών.
  • Παπαγεωργίου Β.Π., “Εφαρμοσμένη Οργανική Χημεία: Άκυκλες Ενώσεις”, Εκδόσεις Παρατηρητής, Θεσσαλονίκη 1986.
  • Γ. Βάρβογλη, Ν. Αλεξάνδρου, Οργανική Χημεία, Αθήνα 1972
  • Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991
  • SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999
  • Μερικές από τις ενέργειες αντιδράσεων υπολογίστηκαν με χρήση κατάλληλου λογισμικού. Θα διασταυρωθούν και βιβλιογραφικά το συντομότερο για μεγαλύτερη ακρίβεια.