Διαφορά μεταξύ των αναθεωρήσεων του «Θετικός αριθμός»

μ
Αναίρεση έκδοσης 1541545 από τον 79.107.44.28 (Συζήτηση χρήστη:79.107.44.28)
(Αναίρεση έκδοσης 1541538 από τον Egmontaz (Συζήτηση χρήστη:Egmontaz))
μ (Αναίρεση έκδοσης 1541545 από τον 79.107.44.28 (Συζήτηση χρήστη:79.107.44.28))
Ο αριθμός 0 (μηδέν) δεν είναι ούτε θετικός, ούτε αρνητικός ή μπορεί να θεωρηθεί ότι είναι και τα δυο ταυτόχρονα. Για πρακτική ευκολία θεωρουμε ότι είναι ουδέτερος, δεν έχει θετικό ή αρνητικό πρόσημο.
 
== '''Ιδιότητες Θετικών Αριθμών'''==
 
Οι θετικοί αριθμοί είναι πάντα μεγαλύτεροι από τους αρνητικούς.
 
Η απόλυτη τιμή τους είναι ίση με την απόλυτη τιμή του αντίστοιχου τους αρνητικού. Δηλαδή αν δεχτούμε ότι ο '''+α''' αντιπροσωπεύει έναν θετικό αριθμό (π.χ +3) και ο '''-α''' τον αρνητικό αυτού (αντίστοιχα -3), τότε η απόλυτη τιμή του θετικού (η απόλυτη τιμή του +3 είναι [3]) είναι ίση με την απόλυτη τιμή του αρνητικού (η απόλυτη τιμή του -3 είναι [3]) και ισούται με '''[α]'''. Η απόλυτη τιμή δείχνει την αριθμητική αξία/ποιότητα του αριθμού.
 
'''''===Πρόσθεση''''' ===
 
Αν προσθέσουμε έναν θετικό αριθμό (+α) με έναν άλλο θετικό (+β) ή το 0 (μηδέν), τότε το αποτέλεσμα είναι πάντα θετικός αριθμός (+γ) και είναι μεγαλύτερος από τον πρώτο αριθμό (+α ή 0) τόσες θέσεις δεξιά του θετικού (+α) όσες δείχνει ο δεύτερος (+β) '''ή (στην πρόσθεση με το μηδέν) ο ίδιος ο αριθμός'''.
 
Αν προσθέσουμε έναν θετικό αριθμό (+α) με έναν αρνητικό (-β) τότε έχουμε τις εξής περιπτώσεις :
*) Αν ο θετικός αριθμός (+α) είναι μικρότερος της αριθμητικής αξίας του αρνητικού (-β = [β]), τότε το αποτέλεσμα είναι πάντα ένας αρνητικός αριθμός (-γ), που μπορεί να έχει ίδια αριθμητική αξία με τον θετικό ή να βρίσκεται τόσες θέσεις αριστερά του θετικού (+α) όσες δείχνει ο αρνητικός (-β), δηλαδή αφαιρούμενος κατά β θέσεις.
 
'''''===Πολλαπλασιασμός'''''===
 
Αν πολλαπλασιάσουμε έναν θετικό αριθμό (+α) με το μηδέν (0), τότε το γινόμενο είναι πάντα μηδέν.
Αν πολλαπλασιάσουμε έναν θετικό αριθμό (+α) με έναν αρνητικό αριθμό (-β), τότε το γινόμενο είναι πάντα αρνητικός αριθμός (-γ), που η αριθμητική του αξία ([γ]) είναι τόσες φορές μεγαλύτερη του θετικού αριθμού (+α) όσες δείχνει ο αρνητικός (-β).
 
'''''===Αφαίρεση'''''===
 
Αν αφαιρέσω έναν θετικό αριθμό (+α) με έναν θετικό αριθμό (+β) τότε οι περιπτώσεις του αποτελέσματος (το πρόσημο του γ) είναι ακριβώς αυτές της πρόσθεσης του πρώτου θετικού αριθμού (+α) με τον αρνητικό αριθμό (-β). Δηλαδή η πράξη ισοδυναμεί με πρόσθεση θετικού αριθμού με αρνητικού
26.490

επεξεργασίες