Διαφορά μεταξύ των αναθεωρήσεων του «Λογάριθμος»

μ (→‎Προέλευση και ορισμός: ξεχασμένη παρένθεση)
:<math>r=\sqrt{x^2+y^2}. \,</math>
 
Το [[όρισμα (μιγαδική ανάλυση)|όρισμα]] φ δεν προσδιορίζεται μοναδικά από τον ''z'': το φ' = φ + 2π είναι επίσης όρισμα του ''z'' επειδή προσθέτοντας 2π ακτίνια ή 360 μοίρες{{#tag:ref|Δείτε [[Ακτίνιο (μονάδα μέτρησης)|ακτίνιο]] για την μετατροπή μεταξύ 2[[Αριθμός π|&pi;]] και 360 [[Μοίρα (κύκλου)|μοίρες]].|group="σημ."}} στο όρισμα φ αντιστοιχεί με αριστερόστροφη περιστροφή γύρω από την αρχή των αξόνων κατά γωνία 2π. Ο μιγαδικός αριθμός που προκύπτει έτσι είναι πάλι ο ''z'', όπως φαίνεται στα δεξιά. Ωστόσο, μόνο ένα όρισμα φ ικανοποιεί τις {{nowrap|−&pi; < &phi;}} και {{nowrap|&phi; &le; &pi;}}. Αυτό αποκαλείται ''κύριο'' ή ''πρωτεύον'' όρισμα και συμβολίζεται Arg(''z''), με κεφαλαίο Α.<ref>{{Citation|last1=Ganguly|location=Kolkata|first1=S.|title=Elements of Complex Analysis|publisher=Academic Publishers|isbn=978-81-87504-86-3|year=2005}}, Definition 1.6.3</ref> (Μία εναλλακτική κανονικοποίηση είναι η {{nowrap|0 &le; Arg(''z'') < 2&pi;}}.<ref>{{Citation|last1=Nevanlinna|first1=Rolf Herman|last2=Paatero|first2=Veikko|title=Introduction to complex analysis|location=Providence, RI|publisher=AMS Bookstore|isbn=978-0-8218-4399-4|year=2007}}, ενότητα 5.9</ref>)
 
[[File:Complex log.jpg|right|thumb|Ο κύριος κλάδος του μιγαδικού λογάριθμου, Log(''z''). Το μαύρο σημείο στο {{nowrap|''z'' {{=}} 1}} αντιστοιχεί σε απόλυτη τιμή μηδέν και τα πιο ανοιχτά (σε [[ένταση (χρώμα)|ένταση]]) χρώματα αντιστοιχούν σε μεγαλύτερες απόλυτες τιμές. Η [[απόχρωση]] του χρώματος αντιστοιχεί στο όρισμα του Log(''z'').]]
26.490

επεξεργασίες