Άνοιγμα κυρίου μενού

Αλλαγές

μ
Διόρθωση συντακτικών λαθών με τη χρήση AWB
Το [[σύνολο]] των '''ρητών αριθμών''' είναι το σύνολο των [[αριθμός|αριθμών]] που μπορούν να γραφούν σε μορφή [[κλάσμα|κλάσματος]]τος με [[ακέραιος αριθμός|ακέραιους]] όρους και [[παρονομαστής|παρονομαστή]] διάφορο του μηδενός. Συμβολίζεται με <math>\mathbb{Q}</math>. Το σύνολο των ρητών περιγράφεται από το σύνολο:
:<center><math>\left\{\frac{\mu}{\nu} : \mu, \nu \in \mathbb{Z}, \nu \ne 0 \right\}</math></center>
και ισοδύναμα από το:
 
=== Τοπολογικές ιδιότητες ===
* Το σύνολο των ρητών αριθμών είναι [[πυκνό]] στο σύνολο των πραγματικών. Με αυτό εννοούμε ότι μεταξύ δύο οποιονδήποτε πραγματικών μπορεί να βρεθεί πάντα ένας ρητός και κατά συνέπεια μεταξύ δύο πραγματικών αριθμών μπορούν να βρεθούν άπειροι σε πλήθος ρητοί αριθμοί.
 
* Επίσης είναι εύκολο να αποδείξει κανείς ότι και μεταξύ δύο οποιονδήποτε ρητών αριθμών μπορεί να βρεθεί τουλάχιστον ένας άλλος ρητός αριθμός και κατά συνέπεια άπειροι σε πλήθος ρητοί.
 
{{Link FA|lmo}}
 
[[af:Rasionale getal]]
[[an:Numero racional]]
30.573

επεξεργασίες