Αριθμητική ανάλυση: Διαφορά μεταξύ των αναθεωρήσεων

Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Gerrard ael (συζήτηση | συνεισφορές)
Χωρίς σύνοψη επεξεργασίας
Gerrard ael (συζήτηση | συνεισφορές)
Γραμμή 88:
 
|}
Οι άμεσες μέθοδοι υπολογίζουν τη λύση ενός προβλήματος σε πεπερασμένο αριθμό βημάτων. Αυτές οι μέθοδοι θα δώσουν σαφή απάντηση, εάν είχαν πραγματοποιηθεί με άπειρη αριθμητική ακρίβεια. Τα παραδείγματα περιλαμβάνουν την μέθοδος απαλοιφής του Γκάους, την παραγοντοποίηση QR για την επίλυση συστημάτων γραμμικών εξισώσεων, και τη μέθοδο simplex του γραμμικού προγραμματισμού. Στην πράξη, πεπερασμένη ακρίβεια χρησιμοποιείται και το αποτέλεσμα είναι μια προσέγγιση της πραγματική λύσης (με την παραδοχή της σταθερότητας).
 
Οι άμεσες μέθοδοι υπολογίζουν τη λύση ενός προβλήματος σε πεπερασμένο αριθμό βημάτων. Αυτές οι μέθοδοι θα δώσουν σαφή απάντηση, εάν είχανέχουν πραγματοποιηθεί με άπειρη αριθμητική ακρίβεια. Τα παραδείγματα περιλαμβάνουν την μέθοδος απαλοιφής του Γκάους, την παραγοντοποίηση QR για την επίλυση συστημάτων γραμμικών εξισώσεων, και τη μέθοδο simplex του γραμμικού προγραμματισμού. Στην πράξη, πεπερασμένη ακρίβεια χρησιμοποιείται και το αποτέλεσμα είναι μια προσέγγιση της πραγματική λύσης (με την παραδοχή της σταθερότητας).
Σε αντίθεση με τους άμεσους μεθόδους, οι επαναληπτικές μέθοδοι δεν αναμένεται να τελειώσουν σε ορισμένα βήματα. Ξεκινώντας από την αρχική υπόθεση, οι επαναληπτικές μέθοδοι αποτελούν διαδοχικές προσεγγίσεις που συγκλίνουν προς την ακριβή λύση μόνο στο όριο. Μια δοκιμή σύγκλισης προσδιορίζεται, προκειμένου να αποφασιστεί πότε μια αρκούντως ακριβή λύση (ευτυχώς) έχει βρεθεί. Ακόμη και με άπειρη αριθμητική ακρίβεια αυτές οι μέθοδοι δεν θα φθάσουν τη λύση μέσα σε ένα πεπερασμένο αριθμό βημάτων. Παραδείγματα αποτελούν η [[Μέθοδος Νίουτον|μέθοδος του Νεύτωνα]], η μέθοδο διχοτόμησης, και η επανάληψη Jacobi. Στην υπολογιστική άλγεβρα πινάκων, οι επαναληπτικές μέθοδοι γενικά απαιτούνται για μεγάλα
 
προβλήματα.
Σε αντίθεση με τουςτις άμεσους μεθόδους, οι επαναληπτικές μέθοδοι δεν αναμένεται να τελειώσουν σε ορισμένα βήματα. Ξεκινώντας από την αρχική υπόθεση, οι επαναληπτικές μέθοδοι αποτελούν διαδοχικές προσεγγίσεις που συγκλίνουν προς την ακριβή λύση μόνο στο όριο. Μια δοκιμή σύγκλισης προσδιορίζεται, προκειμένου να αποφασιστεί πότε μια αρκούντως ακριβή λύση (ευτυχώς) έχει βρεθεί. Ακόμη και μεχρησιμοποιώντας άπειρη αριθμητική ακρίβεια αυτές οι μέθοδοι δεν θα φθάσουν τη λύση μέσα σε ένα πεπερασμένο αριθμό βημάτων (γενικώς). Παραδείγματα αποτελούν η [[Μέθοδος ΝίουτονNewton|μέθοδος του Νεύτωνα]], η μέθοδο διχοτόμησης, και η επανάληψη Jacobi. Στην υπολογιστική άλγεβρα πινάκων, οι επαναληπτικές μέθοδοι είναι γενικά απαιτούνταιαπαραίτητες για μεγάλα προβλήματα.
 
Οι επαναληπτικές μέθοδοι είναι πιο συχνές από τις άμεσες μεθόδους στην αριθμητική ανάλυση. Μερικές μέθοδοι είναι άμεσες, κατ 'αρχήν, αλλά συνήθως χρησιμοποιούνται σαν να μην ήταν, π.χ. GMRES και η μέθοδος συζυγούς κλίσης. Για τις μεθόδους αυτές, ο αριθμός των βημάτων που απαιτούνται για να λάβει την ακριβή λύση είναι τόσο μεγάλη, ότι η προσέγγιση είναι αποδεκτή με τον ίδιο τρόπο όπως και για μια επαναληπτική μέθοδο.