Διαφορά μεταξύ των αναθεωρήσεων του «Παράδοξα του Ζήνωνα»

καμία σύνοψη επεξεργασίας
[[Αρχείο:Zeno of Elea Tibaldi or Carducci Escorial.jpg|thumb|right|350px|Ο Ζήνων δείχνει τις πόρτες (Veritas et Falcita= αλήθεια και ψεύδος), [[Νωπογραφία|Τοιχογραφία]] στο [[Εσκοριάλ]], [[Σιέρα Γκουανταράμα]] ΒΔ της [[Μαδρίτη]]ς]]
Τα '''Παράδοξα του Ζήνωνα''' είναι μια σειρά φιλοσοφικών προβλημάτων που η επινόησή τους αποδίδεται στον αρχαίο Έλληνα φιλόσοφο [[Ζήνων ο Ελεάτης|Ζήνωνα]] τον Ελεάτη (περ. 490–[[430 π.Χ.]]). Τα φιλοσοφικά αυτά προβλήματα είχαν σκοπό την υποστήριξη της φιλοσοφικής θέσης του [[Παρμενίδης|Παρμενίδη]], δάσκαλου του Ζήνωνα, πως τα πάντα συμπίπτουν και η πραγματικότητα είναι αδιαίρετη, οι δε αισθήσεις μας παραπλανούν δίνοντας την ψευδαίσθηση της πολλαπλότητας. Η παραδοχή πως η πραγματικότητα μπορεί και διαιρείται σε όλο και πιο μικρά μέρη καταλήγει βάσει της λογικής στο να γίνονται αβάσταχτα στον νου τα παράδοξα καθώς αντιτίθενται άμεσα στην εμπειρία.
 
==Σύνοψη==
Ειδικότερα ο Ζήνων πίστευε ότι η κίνηση είναι μια ψευδαίσθηση. Πιστεύεται, σύμφωνα με τον Παρμενίδη, ότι ο Ζήνων πήρε την πρωτοβουλία να δημιουργήσει αυτά τα παράδοξα, διότι άλλοι φιλόσοφοι είχαν δημιουργήσει κάποια παράδοξα τα οποία ήταν εις βάρος του Παρμενίδη. Έτσι το δόγμα του Ζήνωνα ερμηνεύεται ότι αν υποθέσουμε ότι υπάρχει πλήθος είναι πιο παράλογο από το να υποθέτουμε ότι υπάρχει ένας. Ο [[Πλάτωνας]] έκανε τον [[Σωκράτης|Σωκράτη]] να ισχυριστεί ότι ο Ζήνων και ο Παρμενίδης υποστήριζαν ακριβώς το ίδιο πράγμα.
 
==Λογικά άτοπα==
Ο [[Ζήνων ο Ελεάτης|Ζήνων]], για να δείξει ότι σε περισσότερα λογικά άτοπα οδηγούσε η αντίθετη υπόθεση, ότι δηλαδή υπάρχουν πολλά και κινούμενα όντα, ανέπτυξε μια πρωτότυπη για την εποχή του συλλογιστική, επιχειρηματολογώντας για το αδύνατο της πολλαπλότητας και της κινητικότητας του όντος. Με αυτή τη συλλογιστική του ο Ζήνων διατύπωσε τα διαβόητα στην ιστορία της φιλοσοφίας και των μαθηματικών παράδοξά του, όπως ο ισχυρισμός ότι ο «Ωκύπους Αχιλλεύς (γρήγορος στα πόδια)» δεν μπορεί να φτάσει στο τρέξιμο τη χελώνα, γιατί, για να τη φτάσει, θα πρέπει η χελώνα να βρίσκεται πάντα μπροστά το, ή ότι το βέλος που έχει εκτοξευτεί, δεν κινείται, γιατί δεν μπορεί να βρίσκεται την ίδια στιγμή στο προηγούμενο και στο επόμενο σημείο του χώρου.<ref>W.C. Salmon, Zeno΄s Paradoxes, N.Y. 1970</ref>
 
==Η σημασία της εποχής των==
Από την άποψη ότι ο Ζήνων ο Ελεάτης πρώτος στην [[ιστορία της Φιλοσοφίας]] ασχολήθηκε μεθοδικά με τα λογικά επακόλουθα όχι μόνο των δικών του υποθέσεων αλλά και των άλλων δίκαια μπορεί να θεωρηθεί, σύμφωνα με την αριστοτελική κρίση, «ευρετής [[διαλεκτική]]ς». Η σημασία του για την εποχή του βρίσκεται στο ότι αυτός με τη συλλογιστική του έθεσε καίρια προβλήματα χώρου, χρόνου, κίνησης κλπ. και έτσι άνοιξε το δρόμο τόσο για τη [[φυσικομαθηματική]] θεμελίωση της [[κοσμολογία]]ς των ατομικών φιλοσόφων, όσο και το γνωσιολογικό [[Σκεπτικισμός|σκεπτικισμό]] και μηδενισμό των [[Σοφιστές|σοφιστών]]. Αργότερα ασχολήθηκαν με τη σκέψη του ο [[Πλάτων]], ο [[Εύδοξος]] ο [[Αριστοτέλης]], ο [[Ηρακλείδης]] κ.α. Μάλιστα οι δυο τελευταίοι από αυτούς, όπως παραδίδεται, είχαν συντάξει και ειδικές πραγματείες ''Πρός τά Ζήνωνος
''<ref>Παγκόσμιο Βιογραφικό Λεξικό, τόμ. 4, σ. 16 , Εκδοτική Αθηνών Α.Ε., 1985</ref>
*Από τα παράδοξα του Ζήνωνα (διατηρημένα στα [[Φυσικά]] του [[Αριστοτέλης|Αριστοτέλη]] και στη Θεωρία του [[Σιμπλίκιος|Σιμπλικίου]]) είναι ουσιαστικά ισοδύναμα το ένα με το άλλο· από τα πιο γνωστά και διαδεδομένα όπως "Ο Αχιλλέας και η χελώνα", " η διαμάχη της διχοτόμησης" και αυτό που αναφέρει ένα βέλος στον αέρα, περιγράφονται με λεπτομέρειες παρακάτω.
 
 
Τα επιχειρήματα του Ζήνωνα είναι τα πρώτα παραδείγματα της μεθόδου "απόδειξη με αντίφαση". Είναι επίσης η βάση των διαλεκτικών μεθόδων που χρησιμοποιούσε ο Σωκράτης.
 
Κάποιοι μαθηματικοί όπως ο Carl Boyer, επέμεναν ότι τα παράδοξα του Ζήνωνα είναι απλώς μαθηματικά προβλήματα τα οποία μπορούν να λυθούν με τον σύγχρονο λογισμό. Ωστόσο, κάποιοι φιλόσοφοι ισχυρίζονται ότι είναι παραλλαγές από διάφορα μεταφυσικά προβλήματα.
 
 
Η προέλευση αυτών των παραδόξων δεν ειναι ξεκάθαρη.Ο Διογένης αναφέρει ότι ο δάσκαλος του Ζηνωνα, ο Παρμενίδης, ήταν ο πρώτος που παρουσίασε τον Αχιλλέα και την χελώνα ενώ σε άλλο κεφάλαιο υποστηρίζει ότι ο Ζήνωνας είναι υπεύθυνος για την γέννεση αυτών των προβληματισμών.
 
===Αχιλλέας και η χελώνα===
Στο παράδοξο του Αχιλλέα και της χελώνας ο Αχιλλέας είναι σε αγώνα δρόμου με μια χελώνα. ο Αχιλλέας επιτρέπει στη χελώνα ένα προβάδισμα 100 μέτρων.Για παράδειγμα, αν υποθέσουμε ότι οι 2 δρομείς θα τρέχουν με σταθερή ταχύτητα (ο ένας αργά και ο άλλος γρήγορα) μετά από πεπερασμένο χρόνο ο Αχιλλέας θα έχει τρέξει 100 μετρά και θα έχει φτάσει το σημείο εκκίνησης της χελώνας.Κατά τη διάρκεια αυτού του χρόνου η χελώνα θα έχει διανύσει πολύ μικρότερη απόσταση (π.χ 10 μέτρα). Στη συνέχεια, θα πάρει τον Αχιλλέα λίγο περισσότερο χρόνο για να τρέξει την απόσταση, στον οποίο η χελώνα θα έχει προχωρήσει πιο μακριά και στη συνέχεια περισσότερο χρόνο ακόμα για να φτάσει αυτό το τρίτο σημείο, ενώ η χελώνα κινείται μπροστά.Έτσι, κάθε φορά που ο Αχιλλέας φτάνει κάπου η χελώνα έχει πάει ακόμα πιο μακριά. Ως εκ τούτου, επειδή υπάρχει ένας άπειρος αριθμός των σημείων που ο Αχιλλέας πρέπει να φθάσει και η χελώνα έχει ήδη πάει, δεν μπορεί ποτέ να ξεπεράσει τη χελώνα
 
===Το παράδοξο της διχοτόμησης===
Ας υποθέσουμε ότι ο Βασίλης θέλει να προλάβει ένα σταθμευμένο λεωφορείο. Προτού να μπορέσει να φτάσει εκεί, θα πρέπει να φτάσει στα μισά του δρόμου για εκεί. Προτού να μπορέσει να φτάσει στα μισά του δρόμου, θα πρέπει να φτάσε το ένα τέταρτο του δρόμου για εκεί. Πριν το ταξίδι στο ένα τέταρτο, θα πρέπει να ταξιδέψει το ένα όγδοο. Πριν από το ένα όγδοο, ένα δέκατο έκτο. Και ούτω καθεξής.
 
<timeline>
ImageSize= width:800 height:100
at:0.1953125 mark:(line,black)
at:0.09765625 mark:(line,black)
 
</timeline>
 
<math>H-\frac{B}{8}-\frac{B}{4}---\frac{B}{2}-------B</math>
 
 
Η ακολουθία που δημιουργείται μπορεί να παρουσιαστεί ως
 
'''<math> \left\{ \cdots, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1 \right\}</math>'''¨
 
Η περιγραφή αυτή απαιτεί την ολοκλήρωση ένος άπειρου αριθμού καθηκόντων, την οποία ο Ζήνωνας καθιστά αδύνατη.
 
Αυτή η ακολουθία παρουσιάζει επίσης ένα δεύτερο πρόβλημα, το ότι δεν περιέχει καμία πρώτη απόσταση για να τρέξει,για κάθε πιθανή (πεπερασμένη) πρώτη απόσταση που θα μπορούσε να χωριστεί στη μέση,και ως εκ τούτου δεν θα είναι η πρώτη τελικά.Με αυτόν τον τρόπο το ταξίδι δεν μπορεί καν να αρχίσει.Το παράδοξο συμπέρασμα τότε θα είναι ότι το ταξίδι σε οποιαδήποτε πεπερασμένη απόσταση δεν μπορεί να συμπληρωθεί ούτε να αρχίσει,και έτσι όλες οι κινήσεις πρέπει να είναι μια ψευδαίσθηση.
 
 
Υπάρχουν δύο εκδοχές του παράδοξου της διχοτόμησης.Στην άλλη εκδοχή, πριν ο Βασίλης φθάσει το σταθμευμένο λεωφορείο,θα πρέπει να φθάσει το μισό της απόστασης. Πριν φτάσει το τελευταίο μισό, θα πρέπει να ολοκληρώσετε το επόμενο τέταρτο της απόστασης. Φτάνοντας στο επόμενο τέταρτο, θα πρέπει να καλύπτει τότε το επόμενο όγδοο της απόστασης,έπειτα το επόμενο δέκατο έκτο, και ούτω καθεξής.Υπάρχει λοιπόν ένας άπειρος αριθμός των βημάτων που πρέπει πρώτα να επιτευχθεί πριν προλάβει να φτάσει το λεωφορείο, με αποτέλεσμα να μην μπορεί να καθοριστεί το μέγεθος του κάθε «τελευταίου» βήματος.Με τον τρόπο αυτό,το παράδοξο της διχοτόμησης είναι ανάλογο με εκείνο του Αχιλλέα και της χελώνας.
 
===Το παράδοξο του βέλους===
Στο παράδοξο του βέλους, ο Ζήνων ισχυρίζεται ότι για να υπάρξει κίνηση, ένα αντικείμενο πρέπει να αλλάξει τη θέση που κατέχει.Δίνει ένα παράδειγμα ενός βέλους κατά την πτήση.Δηλώνει ότι σε κάθε μία χρονική στιγμή, το βέλος ούτε κινείται προς όπου είναι, ούτε όπου δεν είναι.Δεν μπορεί να κινηθεί προς όπου δεν είναι, γιατί δεν υπάρχει χρόνος που μεσολαβεί για να μετακινηθεί εκεί.Δεν μπορεί να κινηθεί προς όπου είναι, γιατί είναι ήδη εκεί.Με άλλα λόγια, σε κάθε χρονική στιγμή δεν υπάρχει καμία κίνηση.Αν όλα είναι ακίνητα σε κάθε στιγμή, και ο χρόνος αποτελείται εξ ολοκλήρου από στιγμές, τότε η κίνηση είναι αδύνατη.
 
Ενώ τα δύο πρώτα παράδοξα χωρίζουν χώρο, αυτό το παράδοξο ξεκινά από τη διαίρεση του χρόνου-και όχι σε τμήματα, αλλά σε σημεία.
 
==Άλλα παράδοξα==
Τρία άλλα παράδοξα, όπως αναφέρονται από τον Αριστοτέλη
 
*Παράδοξο του Τόπου
 
"... Αν όλα όσα υπάρχουν έχουν μια θέση, η θέση επίσης θα έχει μια θέση, και ούτω καθεξής"
 
*Παράδοξο του κόκκου του σιταριού:
 
«... Δεν υπάρχει κανένα μέρος του σιταριού που δεν κάνει έναν ήχο: γιατί δεν υπάρχει κανένας λόγος για τον οποίο κάθε τέτοιο τμήμα δεν θα πρέπει σε οποιοδήποτε χρονικό διάστημα να αδυνατεί να μετακινήσει τον αέρα που ένα βατσέλι (μονάδα μέτρησης βάρους) κινεί στην πτώση. Στην πραγματικότητα, δεν αρκεί για να μετακινήσει ακόμη και μια τέτοια ποσότητα του αέρα που θα κινηθεί εάν αυτός ο κόκκος ήταν από μόνος του: για κανένα κόκκο δεν υπάρχει διαφορετικά από ό, τι ενδεχομένως...»
 
*Οι Κινούμενες Γραμμές
 
Όσον αφορά τις δύο σειρές των φορέων, κάθε γραμμή που αποτελείται από ίσο αριθμό σωμάτων ίσου μεγέθους, περνώντας ο ένας τον άλλο σε ένα στίβο καθώς προχωρούν με την ίδια ταχύτητα σε αντίθετες κατευθύνσεις,η μία γραμμή που καταλαμβάνει αρχικά το χώρο μεταξύ του στόχου και το μεσαίο σημείο της διαδρομής, και το άλλο ότι μεταξύ του μεσαίου σημείου και της έναρξης των υστέρων.
Αυτό ... περιλαμβάνει το συμπέρασμα ότι η μίση δεδομένη χρονική στιγμή είναι ίση με το διπλάσιο αυτού του χρόνου.
 
== Προτεινόμενες λύσεις ==
 
 
Σύμφωνα με τον [[Σιμπλίκιος|Σιμπλίκιο]], ο Διογένης ο Κυνικός, δεν είπε τίποτα όταν άκουσε τα επιχειρήματα του Ζήνωνα, αλλά σηκώθηκε και περπάτησε, προκειμένου να αποδείξει την ανακρίβεια των συμπερασμάτων του Ζήνωνα.Για να λύσουν οποιαδήποτε από τα παράδοξα, ωστόσο , κάποιος πρέπει να δείξει τι είναι λάθος με το επιχείρημα, όχι μόνο τα συμπεράσματα.Μέσα από την ιστορία, έχουν προταθεί διάφορες λύσεις, μεταξύ των πιο πρόσφατα καταγεγραμμένων, είναι εκείνες του Αριστοτέλη και του Αρχιμήδη.
 
Ο [[Αριστοτέλης|Αριστοτέλης]] (384 π.Χ.-322 π.Χ.) παρατήρησε ότι όσο η απόσταση μειώνεται, ο χρόνος που απαιτείται για την κάλυψη των αποστάσεων μειώνεται επίσης, έτσι ώστε ο χρόνος που απαιτείται, επίσης, γίνεται όλο και πιο μικρός.Ο Αριστοτέλης, επίσης, διέκρινε "άπειρα πράγματα σε σχέση διαιρετότητας" (όπως μια μονάδα του χώρου που μπορεί διανοητικά να χωριστεί σε ολοένα και μικρότερες μονάδες, ενώ παραμένει χωρικά το ίδιο) από τα πράγματα (ή αποστάσεις) που είναι άπειρα σε έκταση ("σε σχέση με τα άκρα τους ").
 
 
Πριν από 212 π.Χ., ο Αρχιμήδης είχε αναπτύξει μια μέθοδο για τη δημιουργία μιας πεπερασμένης απάντησης για το άθροισμα των άπειρα πολλών όρων που παίρνουν σταδιακά μικρότερους.(Βλέπε:. Γεωμετρική σειρά, 1/4 + 1/16 + 1/64 + 1/256 + · · ·, Ο Τετραγωνισμός της παραβολής.)Ο σύγχρονος λογισμός επιτυγχάνει το ίδιο αποτέλεσμα, με πιο αυστηρές μεθόδους(βλέπε. συγκλίνουσες σειρές, όπου οι δυνάμεις του 2 της <<1/x>>, ισοδυναμεί με το παράδοξο της διχοτόμησης, αναφέρεται ως συγκλίνουσες). Αυτές οι μέθοδοι επιτρέπουν την κατασκευή των λύσεων με βάση τις προϋποθέσεις που ορίζονται από τον Ζήνωνα, δηλαδή το χρονικό διάστημα που λαμβάνεται σε κάθε βήμα μειώνεται γεωμετρικά.
Μια άλλη προτεινόμενη λύση είναι να αμφισβητήσει μία από τις παραδοχές που χρησιμοποιούνται στα παράδοξα του Ζήνωνα (ιδιαίτερα τη διχοτόμηση), η οποία είναι ότι μεταξύ οποιωνδήποτε δύο διαφορετικών σημείων στο χώρο (ή ώρα), υπάρχει πάντα ένα άλλο σημείο. Χωρίς αυτή την υπόθεση υπάρχει μόνο ένας πεπερασμένος αριθμός των αποστάσεων μεταξύ δύο σημείων, ως εκ τούτου, δεν υπάρχει άπειρη ακολουθία των κινήσεων, και το παράδοξο έχει επιλυθεί.Οι ιδέες το μήκος Planck και ο χρόνος Planck στη σύγχρονη φυσική θέτουν ένα όριο στη μέτρηση του χρόνου και του χώρου, αν όχι τον ίδιο το χρόνο και το χώρο τους. Σύμφωνα με τον Hermann Weyl, η υπόθεση ότι ο χώρος αποτελείται από πεπερασμένες και διακριτές μονάδες υπόκειται σε περαιτέρω πρόβλημα, που δίνεται από το "επιχείρημα κεραμίδι" ή το "πρόβλημα συνάρτησης της απόστασης". Σύμφωνα με αυτό, το μήκος της υποτείνουσας του ορθογωνίου τριγώνου σε διακριτό χώρο είναι πάντα ίσο με το μήκος της μιας από τις δύο πλευρές, σε αντίθεση με γεωμετρία. Ο Jean Paul Van Bendegem υποστήριξε ότι το επιχείρημα κεραμίδι μπορεί να επιλυθεί, και ότι η διακριτοποίηση μπορεί να απομακρύνει το παράδοξο.
Ο Hans Reichenbach πρότεινε πως το παράδοξο μπορεί να προκύψει από τη θεώρηση του χώρου και του χρόνου ως ξεχωριστές οντότητες. Σε μια θεωρία όπως η γενική σχετικότητα, η οποία προϋποθέτει έναν ενιαίο χώρο-συνεχές χρονικό διάστημα, το παράδοξο μπορεί να μπλοκαριστεί.
 
 
===Τα παράδοξα στη σύγχρονη εποχή===
 
Άπειρες διαδικασίες παρέμειναν θεωρητικά προβληματικές στα μαθηματικά μέχρι τα τέλη του 19ου αιώνα. Η epsilon-delta έκδοση των Weierstrass και Cauchy ανέπτυξε μια αυστηρή διατύπωση για τη σχέση της λογικής και του λογισμού. Τα έργα αυτά επίλυσαν άπειρες διαδικασίες που περιλαμβάνουν τα μαθηματικά.
Ενώ τα μαθηματικά μπορούν να χρησιμοποιηθούν για τον υπολογισμό, που και πότε ο κινούμενος Αχιλλέας θα ξεπεράσει τη χελώνα στο παράδοξο του Ζήνωνα, φιλόσοφοι όπως οι Brown και Moorcroft υποστηρίζουν ότι τα μαθηματικά δεν αντιμετωπίζουν το κεντρικό σημείο στην επιχειρηματολογία του Ζήνωνα, και ότι η επίλυση των μαθηματικών θεμάτων δεν λύνει το κάθε πρόβλημα που αναπτύσσουν τα παράδοξα.
 
 
Τα επιχειρήματα του Ζήνωνα συχνά παρερμηνεύονται στη λαϊκή λογοτεχνία.Δηλαδή,ο Ζήνωνας συχνά λέγεται ότι έχει υποστηρίξει ότι το άθροισμα των άπειρων όρων πρέπει να είναι το ίδιο άπειρο, με αποτέλεσμα όχι μόνο ο χρόνος, αλλά και η απόσταση που πρέπει να διανυθεί, να γίνει άπειρη.Ωστόσο, καμία από τις αρχικές αρχαίες πηγές δεν περιλαμβάνει το άθροισμα της κάθε άπειρη σειρά του Ζήνωνα. Ο Σιμπλίκιος έχει καταγεγραμμένο τον Ζήνωνα να λέει ότι "είναι αδύνατο να διασχίσει έναν άπειρο αριθμό πραγμάτων σε ένα πεπερασμένο χρονικό διάστημα». Αυτό παρουσιάζει το πρόβλημα του Ζήνωνα όχι με την εύρεση του αθροίσματος, αλλά με την ολοκλήρωση μιας εργασίας με έναν άπειρο αριθμό βημάτων: πώς μπορεί κανείς ποτέ να πάει από το Α στο Β, αν ένας άπειρος αριθμός των (μη-στιγμιαία) γεγονότων μπορεί να προσδιορίσει ότι πρέπει να προηγούνται της άφιξης στο Β, και κανείς δεν μπορεί να φτάσει ακόμη και την αρχή ενός «τελευταίου γεγονοτος";
 
Ίσως τα επιχειρήματα του Ζήνωνα για την κίνηση, λόγω της απλότητας και της καθολικότητας τους, πάντα θα χρησιμεύουν ως ένα είδος «εικόνα Rorschach» πάνω στο οποίο οι άνθρωποι μπορούν να προβάλλουν τις πιο θεμελιώδη φαινομενολογικές ανησυχίες τους (εάν έχουν).
 
===Κβαντικά Ζήνων αποτελέσματα===
 
 
Το 1977, οι φυσικοί ECG Sudarshan και Β. Misra μελετώντας την κβαντική μηχανική ανακάλυψαν ότι η δυναμική εξέλιξη (κίνηση) στο κβαντικό σύστημα μπορεί να παρεμποδιστεί (ή ακόμα και να ανασταλεί) μέσω της παρατήρησης του συστήματος. Αυτό το φαινόμενο ονομάζεται συνήθως η "κβαντική Ζήνων αποτελέσματος», καθώς θυμίζει έντονα παράδοξο του βέλους του Ζήνωνα. Αυτό το αποτέλεσμα ήταν η πρώτη θεωρία το 1958.
 
 
=== Ζήνων συμπεριφορά===
 
Στον τομέα του ελέγχου και του σχεδιασμού της χρονομέτρησης και των υβριδικών συστημάτων, η συμπεριφορά του συστήματος ονομάζεται Ζήνων αν περιλαμβάνει έναν άπειρο αριθμό διακριτών βημάτων σε ένα πεπερασμένο χρονικό διάστημα. Ορισμένες τυπικές τεχνικές επαλήθευσης αποκλείουν αυτές τις συμπεριφορές από την ανάλυση, εάν δεν είναι ισοδύναμα με μη Ζήνων συμπεριφορά.
 
 
Ένα απλό παράδειγμα ενός συστήματος που δείχνει Ζήνων συμπεριφορά είναι μια μπάλα που αναπηδά που πάει να σταματήσει. Η φυσική της μπάλας που αναπηδά, αγνοώντας άλλους παράγοντες εκτός από την ανάκαμψη, μπορεί να αναλυθεί μαθηματικά για να προβλέψει έναν άπειρο αριθμό αναπηδήσεων.
 
==Αναφορές==
*[[Πλάτων]], [[Κρατύλος (διάλογος)]], [[Παρμενίδης (διάλογος)]], [[Ιππίας ελάσσων]].
 
==Παραπομπές==
{{παραπομπές}}
 
== Εξωτερικοί σύνδεσμοι ==
* Γρίφος: {{cite web|title= Το παράδοξο του Ζήνωνα|url= http://pantsik.blogspot.gr/2009/10/blog-post_4579.html}}
 
[[κατηγορία:Παράδοξα]]
7.939

επεξεργασίες