Πλάνη του τζογαδόρου: Διαφορά μεταξύ των αναθεωρήσεων

Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
μ Ρομπότ: Αφαιρώ 17 σύνδεσμους interwiki, που τώρα παρέχονται από τα Wikidata στο d:Q839726
→‎Παραδείγματα: μικρή αλλαγή για πιο στροτο διάβασμα
Ετικέτες: Επεξεργασία από κινητό Επεξεργασία από εφαρμογή κινητού
Γραμμή 16:
Η πλάνη του τζογαδόρου είναι επίσης γνωστή και ως η πλάνη του [[Μόντε Κάρλο]] επειδή το διασημότερο παράδειγμα συνέβη στο καζίνο του Μόντε Κάρλο το καλοκαίρι του 1913, όταν το μαύρο είχε έρθει 26 συνεχόμενες φορές και οι παίκτες έχασαν εκατομμύρια γαλλικά φράγκα ποντάροντας κόκκινο.
 
Υπάρχει και η αντίθετη περίπτωση, δηλαδή να φαίνεται ότι η πλάνη του τζογαδόρου ισχύει αλλά στην πραγματικότητα να μην ισχύει. Κλασσική περίπτωση είναι το [[Μπλακ τζακ]] όπου οι πιθανότητες να βγει βαλές στα εναπομείναντα χαρτιά είναι μικρότερες από το να βγει οποιοδήποτε άλλο φύλλο εάν έχει ήδη βγει βαλές σε προηγούμενο «χέρι». Σε αυτή την λογική είναι χτισμένο το «μέτρημα των χαρτιών» στο Μπλακ τζακ, το οποίο με την κατάλληλη τακτική μπορεί να αποδώσει κέρδη στον παίκτη, καθώς οι πιθανότητες να κερδίζει στην διάρκεια είναι μεγαλύτερες από αυτές του καζίνο (έως και 2.5%), <u>όταν στα εναπομείναντα χαρτιά</u> υπάρχουν πιο πολλά μεγάλα φύλα (δέκα βαλές ντάμα ρήγας και άσος) από μικρά (δύο τρία τέσσερα πέντε και έξι). Τα φύλα εφτά οχτώ και εννέα δεν τα μετράνε. Τα περισσότερα καζίνο για να αντιμετωπίσουν το μέτρημα των χαρτιών επανατοποθετούν τα ήδη μοιρασμένα χαρτιά στα εναπομείναντα μετά από κάθε «χέρι». Περισσότερα για το μέτρημα χαρτιών στηνστο λύμα αγγλική Wikipedia [[:en:Counting_cards#Systems|Card counting]] της αγγλικής Wikipedia
 
Άλλο ένα παράδειγμα που καταδεικνύει ότι τα μαθηματικά και η ανθρώπινη διαίσθηση είναι αντικρουόμενες έννοιες, είναι το πρόβλημα των γενεθλίων. Από την 1η Ιανουαρίου μέχρι και την 31η Δεκεμβρίου είναι 366 μέρες, συμπεριλαμβανομένης και της 29ης Φεβρουαρίου. Άρα για να είμαστε 100% σίγουροι ότι θα βρούμε τουλάχιστον δύο άτομα με κοινή μέρα γενεθλίων, χρειαζόμαστε το λιγότερο 367 άτομα, δηλαδή αυτούς του 366 και ακόμα έναν.
Ενώ το παραπάνω παράδειγμα είναι πλήρως κατανοητό και μέσα στην «κοινή λογική» δεν ισχύει το ίδιο για τον μικρότερο αριθμό ατόμων που απαιτούνται ώστε η πιθανότητα να βρούμε τουλάχιστον δύο άτομα με την ίδια μέρα γενέθλιων να είναι 99%. Σκεφτείτε το λίγο, κάντε μια πρόβλεψη και μετά διαβάστε το άρθρο [[Παράδοξο των γενεθλίων|πρόβλημα των γενεθλίων]] για να δείτε πόσο έξω πέσατε.
 
==Δείτε επίσης==
*[[Λογική πλάνη]]