Άνοιγμα κυρίου μενού

Αλλαγές

παραπομπές
Η θεωρία συνόλων, που τυποποιείται με χρήση της [[λογική πρώτου βαθμού|λογικής πρώτου βαθμού]], είναι το πιο διαδεδομένο θεμελιώδες σύστημα για τα μαθηματικά. Η γλώσσα της θεωρίας συνόλων χρησιμοποιείται στους ορισμούς σχεδόν όλων των μαθηματικών αντικειμένων, όπως οι [[συνάρτηση|συναρτήσεις]], και έννοιες της συνολοθεωρίας υπάρχουν σε όλα τα διδακτέα προγράμματα μαθηματικών. Στοιχειώδη δεδομένα για τα σύνολα και την ιδιότητα μέλους συνόλου μπορούν να εισαχθούν στο δημοτικό σχολείο, μαζί με [[διάγραμμα Venn|διαγράμματα Βεν]], για τη μελέτη συλλογών από κοινά φυσικά αντικείμενα. Βασικές πράξεις όπως η [[Ένωση συνόλων|ένωση]] και η τομή συνόλων μπορούν να μελετηθούν σ'αυτό το πλαίσιο. Πιο προχωρημένες έννοιες όπως η [[πληθάριθμος|πληθικότητα]] είναι βασικό κομμάτι του προπτυχιακού διδακτικού προγράμματος μαθηματικών.
 
Πέρα από τη χρήση της ως θεμελιώδες σύστημα, η θεωρία συνόλων είναι ένας κλάδος των [[μαθηματικά|μαθηματικών]] από μόνη της, με ενεργή ερευνητική κοινότητα. Η σύχρονη έρευνα στη συνολοθεωρία περιλαμβάνει μια ποικίλη συλλογή από θέματα, που φτάνουν από τη δομή της γραμμής των [[πραγματικός αριθμός|πραγματικών αριθμών]] έως τη μελέτη της συνέπειας για μεγάλους [[Πληθάριθμος|πληθάριθμους]]..
 
=== Ιστορία ===
Συνήθως οι μαθηματικές θεωρίες προκύπτουν και εξελίσσονται δια της αλληλεπιδράσεως μεταξύ των ερευνητών. Ωστόσο, η θεωρία συνόλων αναπτύχθηκε από μία και μοναδική εργασία του [[Γκέοργκ Κάντορ]] (Georg Cantor) το 1874: "Σχετικά με την χαρακτηριστική ιδιότητα των αλγεβρικών αριθμών".
 
Ήδη από τον 5ο αιώνα π.Χ, ο αρχαίος Έλληνας μαθηματικός [[Ζήνων ο Ελεάτης|Ζήνων]] από την μία αλλά και οι αρχαίοι Ινδοί μαθηματικοί από την άλλη, εργάστηκαν πάνω στην έννοια του απείρου. Αξιοσημείωτη είναι η δουλειά του ΜπερνάρμτΜπερνάρντ Μπολζάνο ([[:en:Bernard_Bolzano|Bernard Bolzano]]) στο πρώτο μισό του 19ου αιώνα. Η μοντέρνα αντίληψη περί απείρου ξεκίνησε μεταξύ 1867-71, με την θεωρία του Κάντορ και την θεωρία των αριθμών. Μία συνάντηση των Κάντορ και Ρίτσαρντ[[Ρίχαρντ Ντέντεκιντ|Ντέντεκιντ]] (Richard Dedekind) το 1872 θα επηρεάσει ριζικά τον τρόπο σκέψης του Κάντορ καταλήγοντας στην σχετική εργασία του 1874.
[[File:Georg Cantor 1894.jpg|thumb|Γκέοργκ Κάντορ ]]
 
Το έργο του αρχικά δίχασε του μαθηματικούς της εποχής. Παρ'όλο που οι Καρλ Βάιερστρας ([[:en:Karl_Weierstrass|Karl Weierstrass]]) και Ντέντεκιντ (Dedekind) υποστήριξαν τον Κάντορ, ο Λέοπολντ Κρόνεκερ ([[:en:Leopold_Kronecker|Leopold Kronecker]]), θεμελιωτής της μαθηματικής συγκροτημένης σκέψης, δεν έπραξε το ίδιο. Η καντορική θεωρία συνόλων έγινε ευρέως γνωστή εξαιτίας της χρησιμότητας των εννοιών της, όπως της μία-προς-μία αντιστοιχίας συνόλων, της απόδειξής του ότι υπάρχουν περισσότεροι πραγματικοί αριθμοί απ'ότι ακέραιοι, και του "απείρου των απείρων" ("Ο παράδεισος του Κάντορ" - "[[:en:Cantor's_paradise|Cantor's paradise]]") αποτέλεσμα των πράξεων με δυναμοσύνολα. Η χρησιμότητα της θεωρίας συνόλων οδήγησε στο άρθρο "Μένγκενλερε" ("Mengenlehre") του Άρτουρ Σουνφλις ([[:en:Arthur_Moritz_Schoenflies|Arthur Schoenflies]]) που δημοσιεύτηκε στην εγκυκλοπέδιαεγκυκλοπαίδεια του Klein το 1898.
 
== Βιβλιογραφία ==
6

επεξεργασίες