Άνοιγμα κυρίου μενού

Αλλαγές

καμία σύνοψη επεξεργασίας
Ήδη από τον 5ο αιώνα π.Χ, ο αρχαίος Έλληνας μαθηματικός [[Ζήνων ο Ελεάτης|Ζήνων]] από την μία αλλά και οι αρχαίοι Ινδοί μαθηματικοί από την άλλη, εργάστηκαν πάνω στην έννοια του απείρου. Αξιοσημείωτη είναι η δουλειά του Μπερνάρντ Μπολζάνο ([[:en:Bernard_Bolzano|Bernard Bolzano]]) στο πρώτο μισό του 19ου αιώνα. Η μοντέρνα αντίληψη περί απείρου ξεκίνησε μεταξύ 1867-71, με την θεωρία του Κάντορ και την θεωρία των αριθμών. Μία συνάντηση των Κάντορ και [[Ρίχαρντ Ντέντεκιντ|Ντέντεκιντ]] (Richard Dedekind) το 1872 θα επηρεάσει ριζικά τον τρόπο σκέψης του Κάντορ καταλήγοντας στην σχετική εργασία του 1874.
[[File:Georg Cantor 1894.jpg|thumb|Γκέοργκ Κάντορ ]]
Το έργο του αρχικά δίχασε του μαθηματικούς της εποχής. Παρ' όλο που οι Καρλ Βάιερστρας ([[:en:Karl_Weierstrass|Karl Weierstrass]]) και Ντέντεκιντ (Dedekind) υποστήριξαν τον Κάντορ, ο Λέοπολντ Κρόνεκερ ([[:en:Leopold_Kronecker|Leopold Kronecker]]), θεμελιωτής της μαθηματικής συγκροτημένης σκέψης, δεν έπραξε το ίδιο. Η καντορική θεωρία συνόλων έγινε ευρέως γνωστή εξαιτίας της χρησιμότητας των εννοιών της, όπως της μία-προς-μία αντιστοιχίας συνόλων, της απόδειξής του ότι υπάρχουν περισσότεροι πραγματικοί αριθμοί απ'ότι ακέραιοι, και του "απείρου των απείρων" ("Ο παράδεισος του Κάντορ" - "[[:en:Cantor's_paradise|Cantor's paradise]]") αποτέλεσμα των πράξεων με δυναμοσύνολα. Η χρησιμότητα της θεωρίας συνόλων οδήγησε στο άρθρο "Μένγκενλερε" ("Mengenlehre") του Άρτουρ Σουνφλις ([[:en:Arthur_Moritz_Schoenflies|Arthur Schoenflies]]) που δημοσιεύτηκε στην εγκυκλοπαίδεια του Klein το 1898.
 
== Ορισμένη οντολογία ==
 
== Κύριο άρθρο:το σύμπαν του von Neumann ==
[[File:Von Neumann Hierarchy.svg|thumb|Ένα αρχικό τμήμα της ιεραρχίας von Neumann.]]
Ένα σετ είναι καθαρό αν όλα τα μέλη του είναι σύνολα,όλα τα μέλη των μελών του είναι σύνολα, και ούτω καθεξής. Για παράδειγμα, το σύνολο <nowiki>{{}}</nowiki>που περιέχει μόνο το κενό σύνολο είναι ένα μη κενό καθαρό σύνολο. Στη σύγχρονη θεωρία συνόλων , είναι συνηθισμένο να περιορίζεται η προσοχή στο σύμπαν των καθαρών συνόλων του von '''Neumann''', και πολλά συστήματα της αξιωματικής θεωρίας συνόλων είναι σχεδιασμένα μόνο για την αξιωματική θεωρία των καθαρών συνόλων. Υπάρχουν πολλά τεχνικά πλεονεκτήματα σε αυτόν τον περιορισμό,και η ελάχιστη γενικότητα είναι χαμένη,επειδή ουσιαστικά όλες οι μαθηματικές έννοιες μπορούν να μοντελοποιηθούν από καθαρά σύνολα. Τα σύνολα στο σύμπαν von Neumann είναι οργανωμένα σε μια [[σωρευτική ιεραρχία]], βασισμένη στο πόσο βαθιά τα μέλη τους,τα μέλη των μελών, κλπ είναι ένθετα.Στο κάθε σύνολο σε αυτή την ιεραρχία ανατίθεται ένας [[τακτικός αριθμός]] α, γνωστός ως τάξη του. Η τάξη ενός καθαρού συνόλου X ορίζεται ως το [[λιγότερο άνω άκρο]] όλων των [[διαδόχων]] της τάξης των μελών του X.Για παράδειγμα, στο κενό σύνολο ανατίθεται η τάξη 0,ενώ στο σύνολο <nowiki>{{}}</nowiki> συμπεριλαμβανομένου μόνο του κενού συνόλου ανατίθεται η τάξη 1.Για κάθε τακτικό α, το σύνολο ''V''<sub>α</sub> ορίζεται να αποτελείται από όλα τα καθαρά σύνολα με τάξη μικρότερη από α.Ολόκληρο το σύμπαν του von Neumann συμβολίζεται με ''V''.
 
== Βιβλιογραφία ==
6

επεξεργασίες