Άνοιγμα κυρίου μενού

Αλλαγές

καμία σύνοψη επεξεργασίας
 
== Ορισμένη οντολογία ==
Κύριο άρθρο:το σύμπαν του von Neumann[[File:Von Neumann Hierarchy.svg|thumb|Ένα αρχικό τμήμα της ιεραρχίας von Neumann.]]
 
== Κύριο άρθρο:το σύμπαν του von Neumann ==
[[File:Von Neumann Hierarchy.svg|thumb|Ένα αρχικό τμήμα της ιεραρχίας von Neumann.]]
Ένα σετ είναι καθαρό αν όλα τα μέλη του είναι σύνολα,όλα τα μέλη των μελών του είναι σύνολα, και ούτω καθεξής. Για παράδειγμα, το σύνολο <nowiki>{{}}</nowiki>που περιέχει μόνο το κενό σύνολο είναι ένα μη κενό καθαρό σύνολο. Στη σύγχρονη θεωρία συνόλων , είναι συνηθισμένο να περιορίζεται η προσοχή στο σύμπαν των καθαρών συνόλων του von '''Neumann''', και πολλά συστήματα της αξιωματικής θεωρίας συνόλων είναι σχεδιασμένα μόνο για την αξιωματική θεωρία των καθαρών συνόλων. Υπάρχουν πολλά τεχνικά πλεονεκτήματα σε αυτόν τον περιορισμό,και η ελάχιστη γενικότητα είναι χαμένη,επειδή ουσιαστικά όλες οι μαθηματικές έννοιες μπορούν να μοντελοποιηθούν από καθαρά σύνολα. Τα σύνολα στο σύμπαν von Neumann είναι οργανωμένα σε μια [[σωρευτική ιεραρχία]], βασισμένη στο πόσο βαθιά τα μέλη τους,τα μέλη των μελών, κλπ είναι ένθετα.Στο κάθε σύνολο σε αυτή την ιεραρχία ανατίθεται ένας [[τακτικός αριθμός]] α, γνωστός ως τάξη του. Η τάξη ενός καθαρού συνόλου X ορίζεται ως το [[λιγότερο άνω άκρο]] όλων των [[διαδόχων]] της τάξης των μελών του X.Για παράδειγμα, στο κενό σύνολο ανατίθεται η τάξη 0,ενώ στο σύνολο <nowiki>{{}}</nowiki> συμπεριλαμβανομένου μόνο του κενού συνόλου ανατίθεται η τάξη 1.Για κάθε τακτικό α, το σύνολο ''V''<sub>α</sub> ορίζεται να αποτελείται από όλα τα καθαρά σύνολα με τάξη μικρότερη από α.Ολόκληρο το σύμπαν του von Neumann συμβολίζεται με ''V''.
 
6

επεξεργασίες