Διαφορά μεταξύ των αναθεωρήσεων του «Κατανομή πιθανότητας»

Christospg 31/5/15 τελευταια επεξεργασία
(Christospg 31/5/15 τελευταια επεξεργασία)
 
Είναι γνωστό ότι οι διακριτές κατανομές πιθανοτήτων που χρησιμοποιούνται στη στατιστική μοντελοποίηση περιλαμβάνουν την κατανομή Poisson, την κατανομή Bernoulli,την διωνυμική κατανομή, την γεωμετρική κατανομή, και την αρνητική διωνυμική κατανομή. Επιπλέον, η διακριτή ομοιόμορφη κατανομή χρησιμοποιείται συνήθως σε προγράμματα ηλεκτρονικών υπολογιστών που κάνουν ίσης πιθανότητας τυχαίες επιλογές μεταξύ ενός αριθμού επιλογών.
 
== Συνεχής κατανομή πιθανότητας ==
Μια συνεχής κατανομή πιθανότητας είναι μια κατανομή πιθανοτήτων που έχει συνάρτηση πυκνότητας πιθανότητας.Πολλοί Μαθηματικοί αποκαλούν, επίσης, μια τέτοια διανομή απόλυτα συνεχής, δεδομένου ότι αθροιστική συνάρτηση κατανομής της είναι απολύτως συνεχής σε σχέση με το μέτρο λ Lebesgue. Αν η κατανομή του Χ είναι συνεχής, τότε το Χ ονομάζεται συνεχής τυχαία μεταβλητή. Υπάρχουν πολλά παραδείγματα της συνεχούς κατανομής πιθανότητας όπως: κανονική, ομοιόμορφη, chi-τετράγωνο, και άλλα.
 
Διαισθητικά, μία συνεχής τυχαία μεταβλητή είναι εκείνη η οποία μπορεί να λάβει μια συνεχή σειρά από τιμές, σε αντίθεση με μια διακριτή κατανομή, όπου το σύνολο των πιθανών τιμών για την τυχαία μεταβλητή είναι υπολογίσιμο. Ενώ για μια διακριτή κατανομή ένα γεγονός με πιθανότητα μηδέν είναι αδύνατο (π.χ., να φέρεις 3½ σε ένα αμερόληπτο ζάρι είναι αδύνατο, και έχει πιθανότητα μηδέν),στην περίπτωση της συνεχούς τυχαίας μεταβλητής αυτό δεν συμβαίνει .Για παράδειγμα, εάν κάποιος μετρά το πλάτος ενός φύλλου δρυός, το αποτέλεσμα της 3½ εκατοστά είναι δυνατόν να συμβεί.Ωστόσο, έχει πιθανότητα μηδέν επειδή υπάρχουν πολλές άλλες πιθανές τιμές, ακόμη και μεταξύ 3 cm και 4 cm. Κάθε ένα από αυτά τα επιμέρους αποτελέσματα έχει μηδενική πιθανότητα, αλλά η πιθανότητα ότι το αποτέλεσμα θα ανήκει στο διάστημα (3 εκατοστών, 4 εκατοστά) είναι μη μηδενική. Αυτό το φαινομενικά παράδοξο λύνεται από το γεγονός ότι η πιθανότητα του Χ αποκτά κάποια τιμή μέσα σε ένα άπειρο σύνολο. Επισήμως, κάθε πιθανή τιμή έχει μια απειροελάχιστη πιθανότητα, η οποία στατιστικά είναι ισοδύναμη με το μηδέν.
 
Επισήμως, εάν το Χ είναι μια συνεχής τυχαία μεταβλητή, τότε έχει μια ƒ συνάρτηση πυκνότητας πιθανότητας (x), και ως εκ τούτου την πιθανότητα να ανήκουν σε ένα δεδομένο χρονικό διάστημα, ας πούμε [a, b] δίνεται από το ολοκλήρωμα
 
<nowiki>:
<math></nowiki>
 
\Pr[a\le X\le b] = \int_a^b f(x) \, dx
 
<nowiki></math></nowiki>
 
Ειδικότερα, η πιθανότητα για το Χ να λάβει μια συγκεκριμένη τιμή (δηλαδή a ≤ X ≤ a) είναι μηδέν, επειδή η πιθανότητα να συμπίπτουν τα άνω και τα κάτω όρια είναι πάντοτε ίση με μηδέν.
 
Ο ορισμός αναφέρει ότι μια συνεχής κατανομή πιθανοτήτων πρέπει να έχει πυκνότητα, ή ισοδύναμα την αθροιστική συνάρτηση κατανομής της απολύτως συνεχής. Η απαίτηση αυτή είναι ισχυρότερη από απλή συνέχεια της αθροιστική συνάρτηση κατανομής, και υπάρχει μια ειδική κατηγορία των κατανομών που δεν είναι ούτε συνεχής ούτε διακριτές ούτε ένα μίγμα από αυτά. Ένα παράδειγμα δίνεται από την κατανομή Cantor. Τέτοιες όμως ποτέ δεν συναντώνται στην πράξη.
 
Σημείωση σχετικά με την ορολογία: κάποιοι συγγραφείς χρησιμοποιούν τον όρο «συνεχής διανομή" για να υποδηλώσουν τη διανομή με συνεχή αθροιστική συνάρτηση κατανομής.
 
Μια σύμβαση αναφέρει ότι μια κατανομή πιθανοτήτων ''μ'' λέγεται συνεχής αν η αθροιστική συνάρτηση κατανομής F (x) του = μ(- \ infty, x] είναι συνεχής και, ως εκ τούτου, το μέτρο της πιθανότητας ''μ{x}=0'' για κάθε x.
 
Μια άλλη σύμβαση διατηρεί το όρο συνεχή κατανομή πιθανότητας για απολύτως συνεχείς κατανομές. Αυτές οι κατανομές μπορούν να χαρακτηρίζονται από μια συνάρτηση πυκνότητας πιθανότητας: μια μη-αρνητική Lebesgue συνάρτηση f που ορίζεται επί των πραγματικών αριθμών τέτοια ώστε
 
==Παραπομπές==
35

επεξεργασίες