Άνθρακας: Διαφορά μεταξύ των αναθεωρήσεων

Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Χωρίς σύνοψη επεξεργασίας
Yobot (συζήτηση | συνεισφορές)
μ Διόρθωση συντακτικών λαθών του κώδικα με τη χρήση AWB (11457)
Γραμμή 59:
Ο '''άνθρακας''' ([[λατινική γλώσσα|λατινικά]] ''carbonium''), είναι το [[αμέταλλα|αμέταλλο]] [[Χημικά στοιχεία|χημικό στοιχείο]] με [[χημικό σύμβολο]] '''C''' και [[ατομικός αριθμός|ατομικό αριθμό]] [[6 (αριθμός)|6]]. Είναι μέλος της [[ομάδα του άνθρακα|ομάδας 14]] (πρώην IV<sub>A</sub>) του [[περιοδικός πίνακας|περιοδικού πίνακα]]. Δρα σχεδόν πάντα ως αμέταλλο [[τετρασθενές στοιχείο]], δηλαδή το [[άτομο|άτομό]] του έχει [[4 (αριθμός)|τέσσερα (4)]] [[ηλεκτρόνιο|ηλεκτρόνια]] διαθέσιμα για τη δημιουργία [[ομοιοπολικός δεσμός|ομοιοπολικών]] [[χημικός δεσμός|χημικών δεσμών]]. Υπάρχουν [[3 (αριθμός)|τρία (3)]] φυσικά [[ισότοπο|ισοτοπα]] άνθρακα, από τα οποία o [[άνθρακας-12|<sup>12</sup>C]] και ο [[άνθρακας-13|<sup>13</sup>C]] είναι σταθερά, ενώ ο [[άνθρακας-14|<sup>14</sup>C]] είναι [[ραδιενέργεια|ραδιενεργό]], με [[ημιζωή]] περίπου 5.730 [[έτος|έτη]]<ref name="isotopes">Carbon – Naturally occurring isotopes". WebElements Periodic Table. Retrieved 2008-10-09.</ref>. Ο άνθρακας είναι [[Χρονοδιάγραμμα ανακάλυψης των χημικών στοιχείων|ένα από τα λίγα χημικά στοιχεία που είναι γνωστά από την]] [[Αρχαιότητα]]<ref>History of Carbon". Retrieved 2013-01-10.</ref>
 
Υπάρχουν αρκετές [[αλλότροπα του άνθρακα|αλλοτροπικές μορφές του άνθρακα]], από τις οποίες οι πιο γνωστές είναι ο [[γραφίτης]], το [[διαμάντι]] και ο [[άμορφος άνθρακας]]<ref name="therm prop">"World of Carbon – Interactive Nano-visulisation in Science & Engineering Education (IN-VSEE)". Retrieved 2008-10-09.</ref>. Οι φυσικές ιδιότητες των διαφόρων αλλοτροπικών μορφών του άνθρακα διαφέρουν πολύ. Για παράδειγμα, το διαμάντι είναι πολύ [[διαφάνεια|διαφανές]], το πιο σκληρό φυσικό υλικό που είναι γνωστό και με πολύ μικρή [[ηλεκτρική αγωγιμότητα]], ενώ ο [[γραφίτης]] (του οποίου η ονομασία προέρχεται από την [[ελληνική γλώσσα|ελληνική λέξη]] «γράφω») είναι [[αδιαφάνεια (οπτική)|αδιαφανής]], αρκετά μαλακός για να σχηματίζει μια γραμμή πάνω σε [[χαρτί]] και ένας πολύ καλός [[αγωγός]] του [[ηλεκτρισμός|ηλεκτρισμού]]. Υπό [[κανονικές συνθήκες]], το διαμάντι, ο [[νανοσωλήνας άνθρακα]] και το [[γραφένιο]] έχουν τις υψηλότερες [[θερμική αγωγιμότητα|θερμικές αγωγιμότητες]] από [[Λίστα των θερμικών αγωγιμοτήτων|όλα τα γνωστά υλικά]].
 
Όλες οι (γνωστές) αλλοτροπικές μορφές του άνθρακα, υπό κανονικές συνθήκες, είναι [[στερεό|στερεές]], με το γραφίτη να έχει την πιο [[Θερμοδυναμική ισορροπία|σταθερή θερμοδυναμικά]] μορφή. Ο γραφίτης είναι μάλιστα (σχετικά) χημικά ανθεκτικός και χρειάζεται υψηλή [[θερμοκρασία]] για να αντιδράσει ακόμη και με (καθαρό) [[οξυγόνο]]. Η πιο συνηθισμένη [[Αριθμός οξείδωσης|βαθμίδα οξείδωσης]] του άνθρακα στις [[Ανόργανη ένωση|ανόργανες ενώσεις]] είναι +4, ενώ η βαθμίδα +2 βρίσκεται (για παράδειγμα) στο [[μονοξείδιο του άνθρακα]] και στα [[καρβονύλιο μετάλλου|καρβονυλικά σύμπλοκα]] των [[Στοιχεία μετάπτωσης|μεταβατικών μετάλλων]]. Οι μεγαλύτερες πηγές «ανόργανου άνθρακα» (στη [[Γη]]) είναι ο [[ασβεστόλιθος]], οι [[δολομίτης|δολομίτες]] και το [[διοξείδιο του άνθρακα]], αλλά υπάρχουν και σημαντικές ποσότητες οργανικής προέλευσης αποθεμάτων [[γαιάνθρακας|κάρβουνου]], [[τύρφη]]ς, [[πετρέλαιο|πετρελαίου]], [[φυσικό αέριο|φυσικού αερίου]] καθώς και [[μεθανυδρίτης|μεθανυδρίτες]]. Ο άνθρακας σχηματίζει το μεγαλύτερο αριθμό [[χημική ένωση|χημικών ενώσεων]] από κάθε άλλο χημικό στοιχείο, εφόσον σχεδόν 10.000.000 καθαρές [[οργανική ένωση|οργανικές ενώσεις]] έχουν περιγραφεί προς το παρόν, που αποτελούν (όμως) ένα πολύ μικρό κλάσμα των θεωρητικά πιθανών οργανικών ενώσεων που μπορούν να υπάρξουν, υπό κανονικές συνθήκες<ref name=lanl>Chemistry Operations (December 15, 2003). "Carbon". Los Alamos National Laboratory. Archived from the original on 2008-09-13. Retrieved 2008-10-09.</ref>.
Γραμμή 125:
[[Αρχείο:Eight Allotropes of Carbon.png|μικρογραφία|300px|Αλλοτροπικές μορφές του άνθρακα.]]
 
Ο [[ατομικός άνθρακας]] είναι ένα πολύ βραχύβιο χημικό είδος και γι' αυτό ο (στοιχειακός) άνθρακας σταθεροποιείται σε διάφορες πολυατομικές δομές με διάφορες μοριακές διαμορφώσεις, που ονομάζονται [[αλλοτροπία|αλλοτροπικές μορφές]] του άνθρακα. Οι τρεις (3) (σχετικώς) ευρύτερα γνωστές από τις αλλοτροπικές μορφές του άνθρακα είναι ο [[άμορφος άνθρακας]], ο [[γραφίτης]] και το [[διαμάντι]]. Υπάρχουν όμως και άλλες. Για παράδειγμα, τα [[φουλερένιο|φουλλερένια]] (''fullerenes'') θεωρούνταν κάποτε «εξωτικές» αλλοτροπικές μορφές, αλλά αυτόν τον καιρό συχνά συνθέτονται και χρησιμοποιούνται στην έρευνα: Περιλαμβάνουν τις [[μπακιμπάλες]] (''buckyballs'')<ref>Unwin, Peter. name="Fullerenes(An Overview)buckyballs". Retrieved 2007-12-08.</ref><ref>Ebbesen, T. W., ed. (1997). ''Carbon nanotubes—preparation and properties''. Boca Raton, Florida: CRC Press. ISBN 0-8493-9602-6.</ref>, τους [[νανοσωλήνας άνθρακα|νανοσωλήνες άνθρακα]] (''carbon nanotubes'')<ref name="nanotubes2">Dresselhaus, M. S.; Dresselhaus, G.; Avouris, Ph., ed. (2001). "Carbon nanotubes: synthesis, structures, properties and applications". Topics in Applied Physics (Berlin: Springer) 80. ISBN 3-540-41086-4.</ref>, τα [[ νανομπαντς άνθρακα|νανομπαντς άνθρακα]] (''carbon nanobuds'')<ref name="nanobuds">Nasibulin, Albert G.; Pikhitsa, P.V.; Jiang, H.; Brown, D. P.; Krasheninnikov, A.V.; Anisimov, A. S.; Queipo, P.; Moisala, A. et al. (2007). "A novel hybrid carbon material". Nature Nanotechnology 2 (3): 156–161. Bibcode:2007NatNa...2..156N. doi:10.1038/nnano.2007.37. PMID 18654245.</ref> και τα [[Ανθρακόνημα|νανοανθρακονήματα]] (''nanofibers'')<ref>Nasibulin, A; Anisimov, Anton S.; Pikhitsa, Peter V.; Jiang, Hua; Brown, David P.; Choi, Mansoo; Kauppinen, Esko I. (2007). "Investigations of NanoBud formation". Chemical Physics Letters 446: 109–114. Bibcode:2007CPL...446..109N. doi:10.1016/j.cplett.2007.08.050.</ref><ref>Vieira, R; Ledoux, Marc-Jacques; Pham-Huu, Cuong (2004). "Synthesis and characterisation of carbon nanofibers with macroscopic shaping formed by catalytic decomposition of C2H6/H2 over nickel catalyst". Applied Catalysis A 274: 1–8. doi:10.1016/j.apcata.2004.04.008.</ref>. Αρκετές ακόμη εξωτικές αλλοτροπικές μορφές του άνθρακα έχουν ανακαλυφθεί, όπως ο [[λονσδαλεΐτης]] (''lonsdaleite'')<ref name="lonsdaletite">Clifford, Frondel; Marvin, Ursula B. (1967). "Lonsdaleite, a new hexagonal polymorph of diamond". Nature 214 (5088): 587–589. Bibcode:1967Natur.214..587F. doi:10.1038/214587a0.</ref>, ο [[υαλώδης άνθρακας]] (''glassy carbon'')<ref name="glassy carbon">Harris, PJF (2004). "Fullerene-related structure of commercial glassy carbons". Philosophical Magazine 84 (29): 3159–3167. Bibcode:2004PMag...84.3159H. doi:10.1080/14786430410001720363.</ref>, ο [[νανοαφρός άνθρακα]] (''carbon nanofoam'')<ref>Rode, A. V.; Hyde, S. T.; Gamaly, E. G.; Elliman, R. G.; McKenzie, D. R.; Bulcock, S. (1999). "Structural analysis of a carbon foam formed by high pulse-rate laser ablation". Applied Physics A-Materials Science & Processing 69 (7): S755–S758. doi:10.1007/s003390051522.</ref> και το [[καρβύνιο]] (''carbyne'') ή «γραμμικός [[αιθίνιο|ακετυλενικός]] άνθρακας» (''linear acetylenic carbon'')<ref name=LAC>Heimann, Robert Bertram; Evsyukov, Sergey E. and Kavan, Ladislav (28 February 1999). Carbyne and carbynoid structures. Springer. pp. 1–. ISBN 978-0-7923-5323-2. Retrieved 2011-06-06.</ref>
 
Ο άμορφος άνθρακας είναι μια αλλοτροπική μορφή στα οποία τα άτομα άνθρακα έχουν μια διευθέτηση σε μια μη κρυσταλλική, ακανόνιστη, υαλώδη κατάσταση, που είναι ουσιαστικά γραφίτης, αλλά χωρίς να έχει μια κρυσταλλική μακροδομή. Βρίσκεται ως μια (πιθανώς συγγκολημένη) σκόνη, και είναι το κύριο συστατικό ουσιών όπως το [[ξυλοκάρβουνο]], η [[αιθάλη]] και ο [[ενεργός άνθρακας]]. Σε κανονικές πιέσεις ο άνθρακας παίρνει τη μορφή γραφίτη, στον οποίο κάθε άτομο σχηματίζει (ομοιοπολικούς) δεσμούς [[τρίγωνο|τριγωνικά]] με τρία (3) άλλα άτομα άνθρακα, σε ένα [[επίπεδο]], που αποτελείται από «συμπυκνωμένους»<ref>Δηλαδή με τουλάχιστον μία κοινή πλευρά.</ref> [[εξάγωνο|εξαγωνικούς]] δακτυλίους, ακριβώς σαν κι αυτούς στους [[αρωματικοί υδρογονάνθρακες|αρωματικούς υδρογονάνθρακες]]<ref>Jenkins, Edgar (1973). The polymorphism of elements and compounds. Taylor & Francis. p. 30. ISBN 0-423-87500-0. Retrieved 2011-05-01.</ref>. Το αποτέλεσμα αυτής της σύνδεσης είναι ένα δισδιάστατο δίκτυο από επίπεδα φύλλα που στοιβάζονται (το ένα πάνω στο άλλο) και ενώνονται χαλαρά με αδύναμους δεσμούς μέσω [[δυνάμεις van der Waals|δυνάμεων van der Waals]]. Αυτή η δομή δίνει στο γραφίτη τη μαλακότητά του και τις διασπαστικές του ιδιότητες (τα χαλαρά συνδεμένα φύλλα εύκολα γλυστρούν το ένα πάνω από το άλλο). Επίσης, εξαιτίας της διάχυσης του ενός από τα τέσσερα (4) ηλεκτρόνια της εξωτερικής στοιβάδας κάθε ατόμου άνθρακα σε ένα σχηματισμό [[νέφος π|(διάχυτου δεσμικού) νέφους π]], ο γραφίτης άγει το ηλεκτρικό ρεύμα, αλλά μόνο κατά το επίπεδο κάθε σχηματιζόμενου «φύλλου» του δικτύου ομοιοπολικών δεσμών. Αυτό καταλήγει σε ένα χαμηλότερο επίπεδο ηλεκτρικής αγωγιμότας για το γραφίτη σε σύγκριση με τα περισσότερα μέταλλα. Η διάχυση των ηλεκτρονίων επίσης συνεισφέρει στην ενεργειακή σταθεροποίηση του γραφίτη, σε σύγκριση με το διαμάντι, σε θερμοκρασία δωματίου.
Γραμμή 131:
Σε πολύ υψηλές πιέσεις, τα άτομα άνθρακα σχηματίζουν την πιο συνεκτική αλλοτροπική δομή του διαμαντιού, το οποίο έχει σχεδόν διπλάσια [[πυκνότητα]] σε σύγκριση με το γραφίτη. Στο διαμάντι κάθε άτομο άνθρακα σχηματίζει ομοιοπολικούς δεσμούς σε [[τετράεδρο|τετραεδρική]] δομή με τέσσερα (4) άλλα άτομα άνθρακα, σχηματίζοντας έτσι ένα τρισδιάστατο δίκτυο από συμπτυγμένους εξαμελείς δακτυλίους ατόμων. Το διαμάντι έχει την ίδια [[κύβος|κυβική]] κρυσταλλική δομή που έχει το [[πυρίτιο]] και το [[γερμάνιο]], αλλά επειδή η ισχύς των δεσμών C-C είναι πολύ ισχυρότερη, το διαμάντι είναι το σκληρότερο γνωστό υλικό που εμφανίζεται στη φύση, ως προς την αντίσταση στη χάραξη. Αντίθετα από το δημοφιλές μότο «τα διαμάντια είναι για πάντα» (''diamonds are forever''), στην πραγματικότητα είναι [[θερμοδυναμική|θερμοδυναμικά]] ασταθή στις κανονικές συνθήκες και γι' αυτό (σταδιακά) μετατρέπονται σε γραφίτη<ref name="therm prop"/>. Ωστόσο, εξαιτίας του υψηλού ενεργειακού εμποδίου ενεργοποίησης της διεργασίας, η μετατροπή του διαμαντιού σε γραφίτη είναι τόσο εξαιρετικά αργή, σε θερμοκρασία δωματίου, ώστε περνά απαρατήρητη. Κάτω από ορισμένες συνθήκες, ο άνθρακας κρυσταλλώνεται σαν λονσδαλεΐτης. Στη μορφή αυτή έχει μια εξαγωνική κρυσταλλική δομή στην οποία όλα τα άτομα συνδέονται ομοιοπολικά. Γι' αυτον το λόγο, όλες οι ιδιότητες του λονσδαλεΐτη είναι πολύ κοντά σε αυτές του διαμαντιού<ref name="lonsdaletite"/>.
 
Τα φουλλερένια έχουν μια δομή που ομοιάζει μ' αυτήν του γραφίτη, αλλά αντί να περιέχουν μόνο εξαγωνικούς δακτυλίους, περιέχουν επίσης [[Κανονικό πεντάγωνο|πενταγωνικούς]] (ή ακόμη και [[επτάγωνο|επταγωνικούς]]). Επίσης αντί να σχηματίζουν απλά επίπεδα φύλλα, τα φύλλα τους κάμπτονται σχηματίζοντας [[σφαίρα|σφαιρικές]], [[έλλειψη|ελλειπτικές]] ή [[κύλινδρος|κυλινδρικές]] επιφάνειες. Οι ιδιότητες των φουλλερενίων, που διακρίνονται σε [[μπακυμπάλλες]] (''buckyballs''), [[μπακυσωλήνες]] (''buckytubes'') και νανομπουμπαντς (''nanobuds'') ονομάστηκαν από το όνομα του [[Ρίτσαρντ Μπακμίνστες Φούλλερ]] (''Richard Buckminster Fuller''), που κοινοποίησε τις [[γαιοδεσικές δομές]], που θυμίζουν οι δομές των φουλλερενίων. Οι μπακυμπάλλες είναι μετρίως μεγάλα μόρια που σχηματίζονται από άτομα άνθρακα που συνδέονται τριγωνικά, σχηματίζοντας σφαιροειδείς δομές. Το πιο γνωστό και απλούστερο από αυτά είναι το [[μπακμινστερφουλλερένιο]] C<sub>60</sub>, μια δομή σε σχήμα μπάλας [[ποδόσφαιρο|ποδοσφαίρου]], με [[60 (αριθμός)|60]] άτομα άνθρακα ανά δομή<ref name="buckyballs">Unwin, Peter. "Fullerenes(An Overview)". Retrieved 2007-12-08.</ref>. Οι μπακυσωλήνες είναι δομικά παρόμοιες με τις μπακυμπάλλες, εκτός από το ότι κάθε άτομο άνθρακα συνδέεται τριγωνικά σε ένα φύλλο που κάμπτεται σχηματίζοντας έναν κοίλο κύλινδρο<ref name="nanotubes2"/><ref name="nanotubes">Ebbesen, T. W., ed. (1997). Carbon nanotubes—preparation and properties. Boca Raton, Florida: CRC Press. ISBN 0-8493-9602-6.</ref><ref name="nanotubes2"/>. Τα νανομπαντς έχουν αναφερθεί για πρώτη φορά το [[2007]] και είναι υβριδικές δομές που περιέχουν συνδυασμούς από μπακυμπάλλες και μπακυσωλήνες, συνδυάζοντας έτσι τις ιδιότητες και των δυο απλούστερων δομών<ref name="nanobuds"/>.
 
Μια άλλη αλλοτροπική μορφή είναι ο «νανοαφρός άνθρακα» (''carbon nanofoam''), που είναι μια [[μαγνητισμός|σιδηρομαγνητική]] αλλομορφή του άνθρακα, που ανακαλύφθηκε το [[1997]]. Αποτελείται από χαμηλής πυκνότητας συγκροτήματα ατόμων άνθρακα, συγκρατημένες με ένα χαλαρό τρισδιάστατο δίκτυο, στο οποίο τα άτομα συνδέονται τριγωνικά σε εξαμελείς (ή και επταμελείς) δακτυλίους. Είναι ανάμεσα στα ελαφρύτερα γνωστά στερεά σώματα, με πυκνότητα περίπου 2&nbsp;kg/m³<ref>Schewe, Phil and Stein, Ben (March 26, 2004). "Carbon Nanofoam is the World's First Pure Carbon Magnet". Physics News Update 678 (1).</ref>. Παρομοίως, ο «υαλώδης άνθρακας» (''glassy carbon'') περιέχει ένα υψηλό ποσοστό [[πορωσιμότητα]]ς<ref name="glassy carbon"/>, αλλά σε αντιδιαστολή με τον κανονικό γραφίτη στον οποίο τα γραφιτικά «φύλλα» είναι ενωμένα μεταξύ τους, όπως οι σελίδες σε ένα [[βιβλίο]], στον υαλώδη άνθρακα έχουν μια πιο τυχαία διάταξη. Στο «καρβύνιο» (''carbyne'') ή «γραμμικό ακετυλενικό άνθρακα» (''linear acetylenic carbon'')<ref name=LAC/> τα «μόρια» έχουν δομή -(C≡C)<sub>n</sub>-<ref name=LAC/>. Ο άνθρακας σε αυτήν την αλλομορφή του έχει υβριδισμό sp και είναι ένα πολυμερές με εναλλαγή απλών και τριπλών δεσμών. Αυτή η αλλομορφή παρουσιάζει ένα αξιόλογο ενδιαφέρον για τη νανοτεχνολογία, γιατί ο [[συντελεστής ελαστικότητας Γιανκ]] (''Young's modulus'') γι' αυτό (δηλαδή το καρβύνιο) είναι [[40 (αριθμός)|40πλάσιος]] από αυτό του σκληρότερου γνωστού φυσικού υλικού, δηλαδή του διαμαντιού<ref>Itzhaki, Lior; Altus, Eli; Basch, Harold; Hoz, Shmaryahu (2005). "Harder than Diamond: Determining the Cross-Sectional Area and Young's Modulus of Molecular Rods". Angew. Chem. Int. Ed. 44 (45): 7432–5. doi:10.1002/anie.200502448. PMID 16240306.</ref>.
Γραμμή 325:
{{βικιλεξικό}}
{{commonscat}}
 
 
{{Περιοδικός πίνακας}}