Γραφένιο: Διαφορά μεταξύ των αναθεωρήσεων

Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
μ Removing Link FA template (handled by wikidata)
Yobot (συζήτηση | συνεισφορές)
μ Διόρθωση συντακτικών λαθών του κώδικα με τη χρήση AWB (11457)
Γραμμή 1:
[[Αρχείο:Graphen.jpg|μικρογραφία|300px|Το γραφένιο είναι ένα [[κρυσταλλικό πλέγμα]] ατόμων [[άνθρακας|άνθρακα]] σε κυψελωτή διδιάστατη διάταξη.]]
[[Αρχείο:Nobelpriset i fysik 2010.tif|μικρογραφία|300px|Ένα κομμάτι γραφίτη, ένα τρανζίστορ γραφενίου και ένα σελοτέιπ. Δωρήθηκαν στο [[Μουσείο Νόμπελ]] στην Στοκχόλμη από τον Andre Geim και τον Konstantin Novoselov το 2010. Το [[Βραβείο Νόμπελ]] τους δόθηκε για την ιδέα τους να αποκολλήσουν από τον γραφίτη ένα στρώμα γραφενίου με τη χρήση του σελοτέιπ.]]
Ο όρος '''γραφένιο''' πρωτοεμφανίστηκε το 1987, προκειμένου να περιγράψει μονά φύλλα [[Γραφίτης|γραφίτη]] ως ένα από τα συστατικά των ενώσεων παρεμβολής γραφίτη (GICs).
 
==Ιστορία και πειραματική ανακάλυψη==
Ο όρος χρησιμοποιήθηκε επίσης στις πρώτες περιγραφές των [[Νανοσωλήνας άνθρακα|νανοσωλήνων άνθρακα]], καθώς και για την κρυσταλλική αύξηση του γραφενίου και τους πολυκυκλικούς [[Αρωματικοί υδρογονάνθρακες|αρωματικούς υδρογονάνθρακες]]. Μεγαλύτερα μόρια ή φύλλα γραφενίου (έτσι ώστε να μπορούν να θεωρηθούν ως πραγματικά απομονωμένοι 2D κρύσταλλοι) δεν μπορούσαν να δημιουργηθούν.
 
Οι στρώσεις γραφίτη προηγουμένως (αρχής γενομένης από τη δεκαετία του 1970) προέρχονταν από κρυσταλλική αύξηση από τα άλλα υλικά. Αυτό το «κρυσταλλικά αυξανόμενο γραφένιο» αποτελείται από ένα [[Μονοατομικό ιόν|μόνοατομικού]] πάχους εξαγωνικό πλέγμα των sp<sup>2</sup> δεσμών των ατόμων [[Άνθρακας|άνθρακα]], όπως και στο αυτοτελές γραφένιο. Ωστόσο, υπάρχει σημαντική μεταφορά φορτίου από το υπόστρωμα στο κρυσταλλικά αυξανόμενο γραφένιο και σε ορισμένες περιπτώσεις υβριδοποίησης μεταξύ των d τροχιακών των ατόμων υποστρώματος και των τροχιακών π του γραφενίου, η οποία μεταβάλλει σημαντικά την ηλεκτρονιακή δομή του κρυσταλλικά αυξανόμενου γραφενίου.
 
Στρώσεις γραφίτη παρατηρήθηκαν με [[μικροσκοπία μετάδοσης ηλεκτρονίων]] (ΤΕΜ) σε ακατέργαστα υλικά, ιδίως σε [[αιθάλη]] που λήφθηκε με χημική αποφλοίωση. Υπήρξαν επίσης πολλές προσπάθειες για να κατασκευαστούν πολύ λεπτές ταινίες από [[γραφίτης|γραφίτη]] με μηχανική αποφλοίωση (από το 1990 και μέχρι μετά το 2004), αλλά κανένα από αυτά που παρήχθησαν δεν ήταν λεπτότερο των 50 με 100 στρωμάτων.
 
Ένα σημαντικό βήμα προόδου στην επιστήμη του γραφενίου ήρθε όταν ο Andre Geim και ο Kostya Novoselov στο [[Πανεπιστήμιο του Μάντσεστερ]] κατάφεραν να εξάγουν μονοατομικού πάχους κρυσταλλίτες (γραφένιο) από ακατέργαστο γραφίτη το 2004. Οι ερευνητές έβγαλαν στρώματα γραφενίου από γραφίτη και τα μετέφεραν σε λεπτό [[διοξείδιο του πυριτίου]] πάνω σε δίσκο πυριτίου σε μια διαδικασία που αποκαλείται μικρομηχανική διάσπαση. Το διοξείδιο του πυριτίου απομονωμένο ηλεκτρικά από το γραφένιο αλληλεπίδρασε ασθενώς με το γραφένιο, παρέχοντας στρώματα ουδέτερα φορτισμένα.
 
Η τεχνική μικρομηχανικής διάσπασης οδήγησε άμεσα στην πρώτη παρατήρηση του ανώμαλου κβαντικού φαινομένου του Hall στο γραφένιο, το οποίο παρείχε άμεση απόδειξη της θεωρητικά προβλεπόμενης π φάσης του Berry των χωρίς μάζα [[φερμιόνιο|φερμιονίων]] του Dirac στο γραφένιο. Το ανώμαλο κβαντικό [[Φαινόμενο Hall|φαινόμενο Hall]] στο γραφένιο αναφέρθηκε μέσω προσομοίωσης από τους Geim και Novoselov καθώς και τους Philip Kim και Yuanbo Zhang από το [[Πανεπιστήμιο Κολούμπια]].
 
Η θεωρία του γραφενίου διερευνήθηκε για πρώτη φορά από τον Φίλιπ Ρ. Γουάλας το 1947 ως αφετηρία για την κατανόηση των ηλεκτρονιακών ιδιοτήτων του πιο περίπλοκου 3D γραφίτη. Η αναπτυσσόμενη χωρίς μάζα εξίσωση [[Πολ Ντιράκ|Dirac]] τονίστηκε πρώτα από τους Gordon W. Semenoff και David P. DeVincenzo και Eugene J. Mele. Ο Semenoff υπογράμμισε την εμφάνιση του ηλεκτρονιακού επιπέδου Landau σε ένα μαγνητικό πεδίο ακριβώς στο σημείο Dirac. Αυτό το επίπεδο είναι υπεύθυνο για το ανώμαλο κβαντικό φαινόμενο Hall. Αργότερα, ενιαίες στρώσεις γραφενίου παρατηρήθηκαν άμεσα με [[Ηλεκτρονική μικροσκοπία|ηλεκτρονικό μικροσκόπιο]].
 
Πιο πρόσφατα, δείγματα γραφενίου παρασκευασμένα σε ταινίες του [[νικέλιο|νικελίου]], καθώς και σε πυριτίο αλλά και σε [[ανθρακικό καρβιδίο του πυριτίου]], ανέδειξαν την ανώμαλο κβαντικό φαινόμενο Hall απευθείας σε ηλεκτρικές μετρήσεις. Γραφιτικά στρώματα σε μορφή άνθρακα [[καρβίδιο του πυριτίου|καρβιδίου του πυριτίου]] δείχνουν το φάσμα Dirac σε υπό γωνία φωτοεκπομπή, και το ανώμαλο κβαντικό φαινόμενο Hall παρατηρείται με συντονισμό κυκλοτρόνιου και πειράματα σήραγγας.
Γραμμή 34:
 
===Σχεδιαστικές μέθοδοι===
Το 2004, οι Ρώσοι ερευνητές πήραν γραφένιο από μηχανική αποφλοίωση του γραφίτη. Χρησιμοποίησαν συνεκτική ταινία για να χωρίσουν επανειλημμένα κρύσταλλους γραφίτη σε όλο και περισσότερο λεπτύτερα κομμάτια. Η ταινία με τις επικολλημένες οπτικά διαφανείς νιφάδες διαλύθηκε σε ακετόνη και μετά από μερικά περαιτέρω βήματα, οι νιφάδες συμπεριλαμβανομένων των μονοστρωμάτων είχαν κατακαθίσει σε ένα πλακίδιο πυριτίου. Τα μεμονωμένα ατομικά στρώματα απομονώθηκαν σε ένα οπτικό μικροσκόπιο.
 
Ένα χρόνο αργότερα, οι ερευνητές απλοποίησαν την τεχνική και άρχισαν την ξηρά απόθεση, αποφεύγοντας το στάδιο που το γραφένιο επιπλέει σε ένα υγρό. Οι σχετικά μεγάλοι κρυσταλλίτες (πρώτα, μόνο μερικά μικρόμετρα σε μέγεθος αλλά, τελικά, μεγαλύτεροι από 1 χιλιοστό και ορατοί με γυμνό μάτι) λήφθηκαν από αυτή την τεχνική. Αναφέρεται συχνά ως μέθοδος κολλητικών ταινιών ή σχεδιαστική μέθοδος. Το τελευταίο όνομα εμφανίστηκε επειδή η ξηρά απόθεση μοιάζει με σχέδιο ενός κομματιού γραφίτη.
 
Το κλειδί για την επιτυχία ήταν πιθανώς η χρήση της υψηλής ρυθμοαπόδοσης οπτικής αναγνώρισης του γραφενίου σε κατάλληλα επιλεγμένο υπόστρωμα, το οποίο παρέχει μια μικρή αλλά αξιοπρόσεχτη οπτική αντίθεση.
 
===Κρυσταλλική ανάπτυξη σε καρβίδιο πυριτίου===
Ωστόσο, μια άλλη μέθοδος είναι η θέρμανση καρβίδιου του πυριτίου σε υψηλές θερμοκρασίες (> 1100 &nbsp;° C) για να μειωθεί σε γραφένιο. Η διαδικασία αυτή παράγει ένα δείγμα μεγέθους που εξαρτάται από το μέγεθος του χρησιμοποιούμενου υποστρώματος SiC. Η επιφάνεια του καρβιδίου του πυριτίου χρησιμοποιείται για τη δημιουργία γραφενίου, το πυρίτιο ή ο άνθρακας, επηρεάζουν ιδιαίτερα το πάχος, την κινητικότητα και την πυκνότητα του φορέα γραφενίου.
 
Πολλές σημαντικές ιδιότητες του γραφενίου έχουν βρεθεί στο γραφένιο που παράγεται με αυτή τη μέθοδο. Για παράδειγμα, ο ηλεκτρονιακός δεσμός δομής (αποκαλούμενη δομή κώνου Dirac), έχει απεικονιστεί πρώτα σε αυτό το υλικό. Ασθενής αντι-εντόπιση παρατηρείται σε αυτό το υλικό και όχι κατά την αποφλοίωση του γραφενίου που παράγεται από τη μέθοδο του ίχνους του μολυβιού. Εξαιρετικά μεγάλη, ανεξάρτητης της θερμοκρασίας, κινητικότητα παρατηρήθηκε σε SiC επιταξιακό γραφένιο. Τα προσεγγίζουν στο αποφλοιωμένο γραφένιο τοποθετημένο σε οξείδιο του πυριτίου, αλλά εξακολουθεί να είναι πολύ χαμηλότερη από τι η κινητικότητα στο απομονωμένο γραφένιο που παράγεται με τη σχεδιαστική μέθοδο. Πιο πρόσφατα, το ανώμαλο κβαντικό φαινόμενο Hall έχει παρατηρηθεί σε γραφένιο για επιφάνεια πυριτίου και επιφάνεια άνθρακα του καρβίδιου του πυριτίου.
Γραμμή 48:
 
===Κρυσταλλική ανάπτυξη πάνω σε υποστρώματα μετάλλου===
Αυτή η μέθοδος χρησιμοποιεί την ατομική δομή ενός υποστρώματος μετάλλου για την έναρξη της ανάπτυξης του γραφενίου. Το γραφένιο που καλλιεργείται πάνω σε ρουθήνιο δεν αποφέρει συνήθως δείγμα γραφενίου με ομοιόμορφο πάχος στρωμάτων και η σύνδεση μεταξύ του κατώτερου στρώματος γραφενίου και του υποστρώματος μπορεί να επηρεάσει τις ιδιότητες των στρωμάτων άνθρακα. Από την άλλη πλευρά, το γραφένιο που καλλιεργείται πάνω σε ιρίδιο είναι πολύ αδύναμα συνδεμένο, με ομοιόμορφο πάχος, και μπορεί να έχει πολύ καλή δίαταξη. Όπως και σε πολλά άλλα υποστρώματα, το γραφένιο πάνω σε [[ιρίδιο]] είναι ελαφρά κυματιστό. Λόγω της διάταξης του μεγάλου άξονα αυτών των κυματισμών, γίνεται ορατή η δημιουργία μικροκενών στους ηλεκτρονιακούς δεσμούς της δομής (κώνου Dirac). Υψηλής ποιότητας φύλλα ολιγοστρωματικού γραφενίου που υπερβαίνει το 1 &nbsp;cm<sup>2</sup> (0,2 τετραγωνικές ίντσες) έχουν συντεθεί μέσω χημικής απόθεσης ατμού πάνω σε λεπτές ταινίες νικελίου. Αυτά τα φύλλα έχουν μεταφερθεί με επιτυχία σε διαφορά υποστρώματα διασφαλίζοντας την απόδειξη της βιωσιμότητας για πολλές ηλεκτρονικές εφαρμογές. Μια βελτίωση της τεχνικής αυτής έχει βρεθεί στα φύλλα χαλκού, όπου η ανάπτυξη σταματά αυτόματα μετά από ένα ''μονό'' στρώμα γραφενίου και μπορούν να δημιουργηθούν μεγάλες ταινίες γραφενίου.
 
===Πυρόλυση του αιθοξειδίου του νατρίου (sodium ethoxide)===
 
Μια πρόσφατη δημοσίευση έχει περιγράψει μια διαδικασία για την παραγωγή γραφενίου ποσοτήτων γραμμάριου, από τη μείωση της [[Αιθανόλη|αιθανόληςαιθανόλη]]ς από [[νάτριο]], ακολουθούμενη από την πυρόλυση των παραγώγων του αιθοξειδίου, καθώς και το πλύσιμο με νερό για την αφαίρεση των αλάτων νατρίου.
 
===Μείωση του οξειδίου του γραφίτη===
Γραμμή 63:
 
===Ατομική δομή===
Εικόνες διάθλασης ηλεκτρονίων παρουσίασαν το αναμενόμενο εξαγωνικό δικτυωτό πλέγμα του γραφενίου. Επίσης, το απομονωμένο γραφένιο παρουσίασε «κυματισμό» του επίπεδου φύλλου, με εύρος περίπου ενός νανομέτρου. Αυτοί οι κυματισμοί μπορούν να είναι εγγενείς στο γραφένιο ως αποτέλεσμα της αστάθειας των δισδιάστατων κρυστάλλων ή μπορούν να είναι εξωγενείς, προερχόμενοι από τον πανταχού παρόντα ρύπο που εμφανίζεται σε όλες τις εικόνες TEM, του γραφενίου. Πραγματικού χρόνου, ατομικής ανάλυσης εικόνες απομονωμένου, μονοστρωματικού γραφενίου πάνω σε υποστρώματα διοξειδίου πυριτίου έχουν ληφθεί με μικροσκοπία σάρωσης (STM). Γραφένιο επεξεργασμένο με λιθογραφικές τεχνικές καλύπτεται από υπολείμματα φωτοανθεκτικού υλικού, το οποίο πρέπει να καθαριστεί για να ληφθούν ατομικής ανάλυσης εικόνες. Τέτοια υπολείμματα μπορεί να είναι οι «προσροφημένες ουσίες» που παρατηρούνται στις εικόνες TEM, και μπορεί να εξηγήσει τον κυματισμό του απομονωμένου γραφενίου.
 
Φύλλα γραφενίου σε στερεά μορφή (πυκνότητα > 1 g/cm<sup>3</sup>) εμφανίζονται συνήθως κατά την περίθλαση στρώσεων (002) γραφίτη 0,34 &nbsp;nm. Αυτό ισχύει ακόμη για μερικές μονού τοιχώματος νανοδομές άνθρακα. Ωστόσο, μη στρωματικό γραφένιο με μόνο (hk0) δακτύλιους έχει βρεθεί στον πυρήνα των προηλιακών γραφιτικών κρεμμυδιών. Μελέτες με ηλεκτρονικό μικροσκόπιο μετάδοσης (ΤΕΜ) δείχνουν ελαττώματα σε επίπεδα φύλλα γραφενίου και προτείνουν ένα πιθανό ρόλο σε αυτό το μη στρωματικό γραφένιο για δισδιάστατη δενδριτική κρυστάλλωση τήγματος.
 
Μία έρευνα στο Πανεπιστήμιο του Μάντσεστερ, η οποία δημοσιεύθηκε στο Mesoscale and Nanoscale Physics, έδειξε ότι το γραφένιο μπορεί να αυτοεπισκευάζει τις τρύπες που τυχόν υπάρχουν στα φύλλα του όταν εκτίθεται σε μόρια τα οποία περιέχουν άνθρακα όπως για παράδειγμα οι υδρογονάνθρακες. Όταν οι τρύπες στο γραφένιο βομβαρδίζονται με καθαρά άτομα άνθρακα, τότε αυτές καλύπτονται πλήρως, με τα άτομα του άνθρακα να σπάνε τα κενά και να ευθυγραμμίζονται πλήρως στην εξαγωνική μορφή.
 
===Ηλεκτρονικές ιδιότητες===
Το γραφένιο είναι εντελώς διαφορετικό από τα περισσότερα συμβατικά τρισδιάστατα υλικά. Το φυσικό γραφένιο είναι ένα ημι-μέταλλο ή μηδενικού κενού [[Ημιαγωγός|ημιαγωγός]]. Η κατανόηση της ηλεκτρονικής δομής του γραφένιου είναι το σημείο εκκίνησης για την εξεύρεση της δομής των ζωνών του γραφίτη. Συνειδητοποιήθηκε νωρίς ότι η σχέση E-k είναι γραμμική για χαμηλές ενέργειες κοντά στις έξι γωνίες των δισδιάστατων εξαγωνικών ζώνεων Brillouin, που οδηγεί σε μηδενική ενεργή μάζα για τα ηλεκτρόνια και τις οπές. Λόγω αυτής της γραμμικής (ή " κωνικής ") διασποράς, η σχέση σε χαμηλές ενέργειες, τα ηλεκτρόνια και τις οπές κοντά σε αυτά τα έξι σημεία, δύο εκ των οποίων είναι μη ισοδύναμα, συμπεριφέρονται σαν σχετικιστικά σωματίδια, περιγράφεται από την εξίσωση Dirac για σωματίδια με spin 1 / 2. Ως εκ τούτου, τα ηλεκτρόνια και οι οπές ονομάζονται φερμιόνια Dirac, και οι έξι γωνιές της ζώνης Brillouin ονομάζονται σημεία Dirac. Η εξίσωση που περιγράφει τη σχέση E-k είναι E=ħv<sub>F</sub>(k<sub>x</sub><sup>2</sup> +k<sub>y</sub><sup>2</sup>)<sup>1/2</sup> όπου η ταχύτητα [[Ενρίκο Φέρμι|Fermi]] είναι V<sub>F</sub> ~ 106 m / s.
 
===Οπτικές ιδιότητες===
Οι μοναδικές ηλεκτρονικές ιδιότητες του γραφενίου παράγουν μια απροσδόκητα μεγάλη αδιαφάνεια για μία ατομική μονή στρώση, με εκπληκτικά απλή τιμή: απορροφά πα ≈ 2,3% του λευκού φωτός, όπου α είναι η σταθερά της τέλειας δομής. Αυτό είναι συνέπεια της ασυνήθιστα χαμηλής ενέργειας της ηλεκτρονικής δομής του μονοστρωματικού γραφενίου το οποίο αναδυκνείει ηλεκτρόνια και οπές κωνικής ζώνης που συναντιούνται μεταξύ τους στο σημείο Dirac που είναι ποιοτικά διαφορετικό από τις πιο κοινές τετραγωνικές συμπαγείς ζώνες.
 
Αυτό έχει επιβεβαιωθεί πειραματικά, αλλά η μέτρηση δεν είναι αρκετά ακριβής ώστε να αποδειχθεί με άλλες τεχνικές για τον καθορισμό της σταθεράς της τέλειας δομής.
Γραμμή 90:
 
===Θερμικές ιδιότητες===
Η σε θερμοκρασία δωματίου θερμική αγωγιμότητα του γραφενίου μετρήθηκε πρόσφατα να είναι μεταξύ (4.84±0.44) ×10<sup>3</sup> έως (5.30±0.48) ×10<sup>3</sup> Wm<sup>−1</sup>K<sup>−1</sup>. Οι μετρήσεις αυτές, που πραγματοποιούνται από τεχνική μη οπτικής επαφής, είναι μεγαλύτερες από εκείνες που μετρώνται για νανοσωλήνες άνθρακα ή διαμάντι. Μπορεί να αποδειχθεί με τη χρήση του νόμου των Wiedemann-Franz, ότι η θερμική αγωγιμότητα κυριαρχείται από φωνόνια. Η βαλλιστική θερμική αγωγιμότητα του γραφενίου είναι ισότροπη.
 
Η Δυναμικότητα για αυτή την υψηλή αγωγιμότητα μπορεί να διαπιστωθεί από την εξέταση γραφίτη, μία 3D έκδοση του γραφενίου που έχει βασική επίπεδο θερμικής αγωγιμότητας πάνω από 1000 W/mK (συγκρίσιμη με διαμάντι). Στο γραφίτη, στον γ άξονα (εκτός στρώματος) η θερμική αγωγιμότητα είναι κατά ένα παράγοντα περίπου 100 μικρότερη λόγω των περιορισμένων δεσμευτικών δυνάμεων μεταξύ των βασικών επιπέδων, καθώς και του μεγαλύτερου διαστήματος πλέγματος. Επιπλέον, η βαλλιστική θερμική αγωγιμότητα του γραφενίου φαίνεται να κατώτερο όριο των βαλλιστικών θερμικών αγωγιμοτήτων, ανά μονάδα περιφέρειας, μήκους των νανοσωλήνων άνθρακα.
Γραμμή 96:
===Μηχανικές ιδιότητες===
 
Το 2008 πραγματοποιείται το πρώτο πείραμα που αποδεικνύει ότι το γραφένιο είναι το ισχυρότερο υλικό που υπάρχει στη φύση <ref name="Hone">Lee, et al., Science, 321, (2008), 385-388</ref>. Οι μετρήσεις έδειξαν ότι το γραφένιο έχει αντοχή εφελκυσμού 100 φορές μεγαλύτερη από το [[Ατσάλι|ατσάλι]]<ref name="Nobel_Appendix">http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/advanced-physicsprize2010.pdf</ref>. Ωστόσο, η διαδικασία παραγωγής του μέσω ης μηχανικής αποφλοίωσης του φυσικού γραφίτη, θα απαιτήσει περαιτέρω τεχνολογική ανάπτυξη πριν να γίνει εμπορικά διαθέσιμο.
 
Χρησιμοποιώντας ένα μικροσκόπιο ατομικής δύναμης (AFM), μετρήθηκε η σταθερά ελαστικότητας φύλλων γραφενίου <ref name="Hone">Lee, et al., Science, 321, (2008), 385-388</ref>. Τα φύλλα γραφενίου, τοποθετήθηκαν σε κυκλικές κοιλότητες διοξειδίου του πυριτίου και η ακίδα του AFM χρησιμοποιήθηκε για την μέτρηση των μηχανικών ιδιοτήτων του. Η αντοχή στη θραύση μετρήθηκε στα 42 Ν/m, το μέτρο ελαστικότητας Young στο 1 TPa και η αντοχή στον εφελκυσμό (στο επίπεδο του κρυστάλλου)στα 130 GPa. Αυτές οι εξαιρετικά υψηλές τιμές καθιστούν το γραφένιο το πιο ισχυρό υλικό στη φύση, που μπορεί να αξιοποιηθεί σε πληθώρα εφαρμογών από την νανοηλεκτρονική (π.χ. αισθητήρες πίεσης, συντονίσιμοι νανοταλαντωτές), ως την αεροδιαστημική τεχνολογία, όπου το γραφένιο θα μπορούσε να χρησιμοποιηθεί ως ενισχυτικό μέσο για την δημιουργία νέων πολύ ανθεκτικών συνθέτων υλικών <ref name="Roadmap">Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012)</ref>.
 
Στην Ελλάδα τα τελευταία 4 χρόνια υπάρχει σημαντική ερευνητική δραστηριότητα στο γραφένιο (παραγωγή, χαρακτηρισμός και εφαρμογές), που πραγματοποιείται στο [http://graphene.iceht.forth.gr/ Κέντρο Γραφενίου] του Ινστιτούτου Επιστημών Χημικής Μηχανικής του Ιδρύματος Τεχνολογίας και Έρευνας ([http://www.iceht.forth.gr ΙΤΕ/ΙΕΧΜΗ]). Η πρώτη ερευνητική εργασία που μελετά την συμπεριφορά του γραφενίου υπό θλιπτική μηχανική φόρτιση<ref name="SMALL">G. Tsoukleri, J. Parthenios, K. Papagelis, R. Jalil, A. Ferrari, A. Geim, K. Novoselov, and C. Galiotis, "Subjecting a Graphene Monolayer to Tension and Compression", SMALL 5, 2397–2402 (2009) [http://onlinelibrary.wiley.com/doi/10.1002/smll.200900802/abstract source] </ref>, πραγματοποιήθηκε το 2009 στο Κέντρο Γραφενίου σε συνεργασία με τους κατόχους του βραβείου Nobel Φυσικής για το 2010. Για την δημοσίευση αυτή γίνεται ειδική μνεία, ως η πρώτη παγκοσμίως εργασία στην θλιπτική συμπεριφορά του γραφενίου, στην παρουσίαση του βραβείου Nobel από τον κάτοχο του Kαθ. Κostya Νovoselov στα έγκυρα επιστημονικά περιοδικά Review of Modern Physics <ref name="RMP"> K. Novoselov “Nobel Lecture: Graphene: Materials in the Flatland”, Rev. Mod. Phys. 83, 837–849 (2011) [http://rmp.aps.org/forward/RMP/v83/i3/p837_1 source] </ref> και Angewante Chemie<ref name="AngewanteC">“Graphene: Materials in the Flatland (Nobel Lecture)”, Ang. Chemie, 50(31), 6986–7002 (2011) [http://onlinelibrary.wiley.com/doi/10.1002/anie.201101502/references source] </ref> .
 
===Μαγνητικές ιδιότητες===
 
Η μαγνητική διάταξη στον άνθρακα μπορεί να αποδοθεί σε ατομικές ατέλειες που έχουν μαγνητική ροπή. Για παράδειγμα στην εικόνα 3 μπορεί να υπάρχουν adatoms στην επιφάνεια του φύλου (Α), είτε κενό άνθρακα (Β), είτε άκρο που τελειώνει με σχήμα ζιγκ-ζάγκ (C). Η περιοχή μέσα στην εστιγμένη γραμμή περικλείει τη μοναδιαία κυψελίδα μιας μαγνητικής ταινίας σε γραφένιο, που έχει σπιν 1/2, και οι προεξοχές παριστάνουν άτομα υδρογόνου. καθεμιά από αυτές τις ατέλειες πιστεύεται ότι μπορεί να επάγει μια μαγνητική ροπή, αλλά δεν είναι ακόμη γνωστό πως αυτές οι ροπές αλληλεπιδρούν για να παράγουν μια μαγνητική μακροσκοπική διάταξη. <ref>http://www.physics4u.gr/news/2004/scnews1680.html</ref>
 
==Εφαρμογές==
Γραμμή 110:
===Πολυμερή σύνθετα με ενίσχυση γραφενίου===
 
Απλώνοντας ένα μικρό ποσό γραφενίου σε κάποιο [[Πολυμερές|πολυμερές]], οι ερευνητές έφτιαξαν σκληρά και ελαφρά υλικά. Η ηλεκτρική συμπεριφορά στα σύνθετα μπορεί να αντέξει πολύ υψηλότερες θερμοκρασίες από ό, τι τα πολυμερή μόνα τους.
 
Τα πολυμερή μπορούν να εγχυθούν με νανοσωλήνες άνθρακα για να φτιάξουν υλικά με παρεμφερείς ιδιότητες.
 
Επίσης το γραφένιο ενδέχεται να έχει μικρότερη τοξικότητα από νανοσωλήνες άνθρακα. Μια δημοσίευση στο περιοδικό Nature Nanotechnology διαπίστωσε ότι μεγάλοι νανοσωλήνες άνθρακα προκαλούν τις ίδιες τοξικές αντιδράσεις σε ποντίκια, όπως αυτές του [[αμίαντος|αμίαντου]]. Η ανησυχία είναι ότι οι νανοσωλήνες άνθρακα μπορούν να μιμούνται τις ίνες αμιάντου, οι οποίες είναι αρκετά λεπτές για να διεισδύσουν στους [[πνεύμονες]] και να προκαλούν [[καρκίνος|καρκίνο]]. Το γραφένιο, από την άλλη πλευρά, το οποίο είναι ένα νανόμετρο μόνο σε πάχος, είναι αρκετά μεγάλο στις δύο άλλες διαστάσεις. και δεν θα είναι σε θέση να περάσει από τα εμπόδια του αίματος στον εγκέφαλο ή στα κύτταρα, αναφέρει ο Lawrence Drzal, διευθυντής του Κέντρου Σύνθετων Υλικών και Δομών στο [[Πανεπιστήμιο του Μίσιγκαν]].
 
Τα πολυμερή σύνθετα με ενίσχυση γραφενίου είναι ιδανικά για ελαφριές δεξαμενές βενζίνης και πλαστικά δοχεία που διατηρούν τη φρεσκάδα των τροφίμων για εβδομάδες. Θα μπορούσαν επίσης να χρησιμοποιηθούν για να φτιάξουν ελαφρύτερα και με μικρότερη κατανάλωση καυσίμων αεροσκάφη και εξαρτήματα αυτοκινήτων, καθώς και ισχυρότερες ανεμογεννήτριες, ιατρικά εμφυτεύματα, και αθλητικό εξοπλισμό. Επιπλέον, είναι καλοί αγωγοί του ηλεκτρισμού και θα μπορούσαν να χρησιμοποιηθούν για να φτιαχτούν διαφανείς αγώγιμες επιστρώσεις για ηλιακές κυψελίδες και οθόνες. <ref name="technologyreview">[http://www.technologyreview.com/computing/20821/?a=f http://www.technologyreview.com/computing/20821/?a=f]</ref>
 
Η ανάπτυξη αποτελεί μέρος μιας ευρύτερης προσπάθειας έρευνας για να δημιουργήσουν πολυμερή ενισχυμένα με νανοσωματίδια. [[Ίνες άνθρακα]] και [[υαλοβάμβακας|ίνες γυαλιού]] χρησιμοποιούνται παραδοσιακά για την ενίσχυση πολυμερών. Σε αντίθεση με τις ίνες, όμως, ένα πολύ μικρό ποσό των νανοσωματιδίων (λιγότερο από το 2 τοις εκατό του όγκου του σύνθετου) είναι αρκετό για να κάνει το πολυμερές ισχυρότερο και ανθεκτικότερο στη θερμότητα. Επειδή χρησιμοποιείται λιγότερο υλικό πληρώσεως, το σύνθετο μπορεί να διατηρήσει την ικανότητα τανισμού και τη διαφάνεια το πολυμερούς.
Γραμμή 126:
===Το γραφένιο στην κατασκευή εύκαμπτων οθονών και κυκλωμάτων===
 
To γραφένιο είναι εύκαμπτο και εξαιρετικά καλός αγωγός του ηλεκτρισμού. Επίσης, είναι ένα υλικό πιο σκληρό κι από το [[διαμάντι]]. Θα μπορούσε λοιπόν να βρει χρήση σε εύκαμπτες οθόνες του [[ηλεκτρονικός υπολογιστής|υπολογιστή]], σε μοριακά ηλεκτρονικά και σε νέες ασύρματες επικοινωνίες.
 
Η κατασκευή φύλλων γραφενίου υψηλής ποιότητας είναι συνήθως μια αργή, επίπονη διαδικασία, όμως τελευταία αρκετές ερευνητικές ομάδες έχουν ανακαλύψει τρόπους για να φτιαχτούν [[Ηλεκτρικό κύκλωμα|κυκλώματα]] γραφενίου, χρησιμοποιώντας τεχνικές δανεισμένες από την κατασκευή [[μικροτσίπ]] για μαζική παραγωγή. <ref name="phy1">[http://www.physics4u.gr/news/2009/scnews3614.html http://www.physics4u.gr/news/2009/scnews3614.html]</ref>
 
Τα στρώματα του γραφενίου - άτομα άνθρακα διατεταγμένα σε ένα σχήμα κυψελοειδούς δομής από εξάγωνα πάχους ενός μόλις ατόμου - μπορούμε να τα πάρουμε εύκολα από τη μύτη ενός μολυβιού αν χρησιμοποιήσουμε μια κολλητική ταινία. Αντίθετα, η νέα τεχνική αναγκάζει τα άτομα του άνθρακα, μέσα σε ατμούς [[υδρογονάνθρακας|υδρογονανθράκων]], να κολλήσουν πάνω σε μια επιφάνεια νικελίου και έτσι να σχηματίσουν εξάγωνα, τη γνωστή μορφή του γραφενίου.
 
Εν συνεχεία χρησιμοποιώντας τεχνικές που συναντάμε στην κατασκευή των τσιπ χαράσσονται ολοκληρωμένα κυκλώματα πάνω στην επιφάνεια νικελίου. Καθώς σχηματίζονται στρώματα γραφενίου, αυτά παίρνουν το σχήμα του κυκλώματος που θέλουμε, αναφέρουν ερευνητές στο περιοδικό Nature.
 
"Η ανακάλυψη ενός κατάλληλου υλικού που να είναι διαφανές, αγώγιμο και λεπτό είναι ο μεγάλος στόχος", λέει ο Philip Kim, ένας από τους ερευνητές και φυσικός της συμπυκνωμένης ύλης στο Πανεπιστήμιο Κολούμπια. Ο Kim και οι συνάδελφοί του έδειξαν ότι το γραφένιο που σχηματίζεται από την απόθεση χημικού ατμού, διατηρεί εξαιρετικές ηλεκτρικές ιδιότητες ακόμη και όταν λυγίζεται.
 
Τα τελικά φύλλα γραφενίου -πάνω σε πολυμερές πλαστικό - έχουν τόσο μικρό πάχος ώστε να παραμένουν διαφανή και να μπορούν να κάμπτονται ή να τεντώνονται, ανάλογα με το πολυμερές που χρησιμοποιήθηκε στην κατασκευή τους.
 
Η νέα τεχνική θα μπορούσε να αξιοποιηθεί αρχικά για την ανάπτυξη ελαστικών οθονών, στις οποίες το γραφένιο θα υποκαθιστά το ακριβό και άκαμπτο οξείδιο [[τιτάνιο|τιτανίου]]-[[ίνδιο|ίνδιου]]υ.
Αργότερα, όταν θα υπάρχουν τεχνικές για την παραγωγή ποιοτικών φύλλων γραφενίου σε μεγάλες διαστάσεις, ο άνθρακας θα αρχίσει να αντικαθιστά το πυρίτιο σε όλες τις εφαρμογές της ηλεκτρονικής, προβλέπει ο ερευνητής.<ref name="phy1" />
 
=== Ύφανση ===
 
Δημιουργήθηκε ένα νέο υλικό, το οξείδιο του γραφενίου, που μπορεί να διπλωθεί, να ζαρωθεί και -- μέχρικαι—μέχρι ενός σημείου -- νασημείου—να τεντωθεί. Αλλά παρόλο ότι έχει το ίδιο πάχος με το συνηθισμένο χαρτί (μόλις ένα χιλιοστό του χιλιοστού) είναι πολύ δύσκαμπτο και εξαιρετικά ανθεκτικό, ισχυρίζονται οι εφευρέτες του. Επιπλέον, θεωρούν ότι το υλικό που βασίζεται σε μια ένωση του άνθρακα μπορεί να προσαρμοστεί για πολλές εφαρμογές, συμπεριλαμβανομένης και της μοριακής αποθήκευσης, σαν ιοντικού αγωγού και σαν υπερπυκνωτή (Nature 448 457).
 
Μια ομάδα από το Βορειοδυτικό Πανεπιστήμιο στο Σικάγο συμπεριλαμβανομένου και του Rodney Ruoff έχει ανακαλύψει ότι μεγάλες ποσότητες οξειδωμένου γραφενίου μπορούν να 'υφανθούν' μαζί, δημιουργούν έναν νέο τύπο "χαρτιού" που είναι πιο δύσκαμπτο και ισχυρότερο από άλλα λεπτά υλικά. Συγκεκριμένα δημιούργησαν το νέο υλικό από επικαλυπτόμενα φύλλα οξειδίου του γραφενίου, ενωμένα όπως τα κεραμίδια μιας στέγης χάρη σε δεσμούς [[υδρογόνο]]υ. Επίσης, διπλώνεται σχετικά εύκολα αλλά σκίζεται πολύ δύσκολα.
Γραμμή 149:
"Το όνειρό μου ήταν να αποσυνθέσω το γραφίτη σε μεμονωμένα φύλλα, και έπειτα να συγκεντρώσω εκ νέου αυτά τα φύλλα με διαφορετικούς τρόπους", λέει ο Ruoff.
 
Για να το καταφέρει άρχισε με την οξείδωση του γραφίτη, με σκοπό να αντικαταστήσει κατά προσέγγιση τα μισά από τα άτομα άνθρακα με άτομα οξυγόνου. Όταν το οξείδιο του γραφίτη αναμιγνύεται με νερό, αυτά τα άτομα του οξυγόνου απωθούν τα μόρια του νερού, αναγκάζοντας τα μεμονωμένα στρώματα - του οξειδίου του γραφενίου - να διασκορπιστούν ή να γίνουν "φύλλα". Οι ερευνητές ακολούθως φίλτραραν αυτό το μίγμα (με τα φύλλα) με τη βοήθεια μιας μεμβράνης, η οποία συλλέγει τα στρώματα με μια τέτοια ρύθμιση ώστε παραγάγει οξείδιο του γραφενίου λεπτό σαν χαρτί.
 
Ο κανονικός γραφίτης έχει μια λεπτή δομή, που χρειάζεται μόνο μια μικρή πλευρική δύναμη για να διασπαστεί σε κανονικά λεπτά στρώματα. Αντιθέτως, τα στρώματα στο οξείδιο του γραφενίου αναμειγνύονται το ένα με το άλλο και ρυτιδώνουν στις μεγαλύτερες κλίμακες. Αυτό επιτρέπει στο φορτίο να κατανεμηθεί σε όλη τη δομή, γι αυτό και η δομή αυτή γίνεται πιο ισχυρή από το φύλλο του γραφίτη και το φύλλο από νανοσωλήνες άνθρακα. Στην πραγματικότητα, ισχυρίζεται ο Ruoff, το μόνο ισχυρότερο υλικό θα μπορούσε να είναι το διαμάντι.
 
Η περιπλεγμένη δομή αφήνει, επίσης, μεμονωμένη μετατόπιση των στρωμάτων το ένα πάνω από το άλλο, έτσι ώστε τα συλλογικά στρώματα να γίνονται εύκαμπτα.
Αλλά το πιο σπουδαίο είναι ότι το χαρτί μπορεί χημικά να συντονιστεί με την αλλαγή της ποσότητας του οξυγόνου στα στρώματα. Η μείωση της περιεκτικότητας σε οξυγόνο, παραδείγματος χάριν, θα το έκανε μονωτή μέσα σε έναν καλό αγωγό, έτσι η ηλεκτρική αγωγιμότητα των υλικών αυτών στο μέλλον θα είναι δυνατόν να ρυθμιστεί κατά βούληση. Επιπλέον, το ειδικό αυτό χαρτί θα μπορούσε να εμποτιστεί με πολυμερή, κεραμικά ή μέταλλα, για να κάνει σύνθετα υλικά που να ξεπερνούν σε πολύτιμες ιδιότητες τα καθαρά αντίστοιχά τους.
 
Οι εφαρμογές της νέας τεχνολογίας θεωρητικά είναι πολλές. Μια ενδιαφέρουσα ιδιότητα του υλικού, που καθιστά πιθανή τη χρήση του στη μικροηλεκτρονική, είναι η ηλεκτρική του αγωγιμότητα, η οποία στο μέλλον θα είναι δυνατόν να ρυθμιστεί κατά βούληση.
 
Αυτή η μεγάλη γκάμα των ιδιοτήτων του θα μπορούσε να σημαίνει ότι υπάρχουν εφαρμογές τόσο διαφορετικές, όσο και οι μεμβράνες με ελεγχόμενη διαπερατότητα στους υπερπυκνωτές για την αποθήκευση της ενέργειας. <ref>http://www.physics4u.gr/news/2007/scnews2947.html</ref>
 
===Το γραφένιο στην αποθήκευση του υδρογόνου===
Γραμμή 170:
Σύμφωνα με τις εκτιμήσεις των τριών επιστημόνων, το νέο υλικό (pillared graphene) μπορεί θεωρητικά να αποθηκεύσει μέχρι 41 γραμμάρια υδρογόνου ανά λίτρο, σχεδόν καλύπτοντας τις αντίστοιχες προδιαγραφές του αμερικανικού υπουργείου Ενέργειας (45 γρ. ανά λίτρο) για εφαρμογές στις μεταφορές.
 
Το επόμενο βήμα, κατά τους ερευνητές, θα είναι η κατασκευή του νέου υλικού και η δοκιμασία του στην πράξη. <ref name="sciencedaily">[http://www.sciencedaily.com/releases/2007/07/070725143625.htm http://www.sciencedaily.com/releases/2007/07/070725143625.htm]</ref>
 
===Το λεπτότερο μπαλόνι του κόσμου===