Διαφορά μεταξύ των αναθεωρήσεων του «Ευκλείδεια γεωμετρία»

 
=== Pons Asinorum ===
Το [[Θεώρημα της γέφυρας των γαιδουριών|Θεώρημα της γέφυρας των γαϊδουριών]] (Pons Asinorum) αναφέρει ότι σε ισοσκελή τρίγωνα οι γωνίες της βάσης είναι ίσες μεταξύ τους, και αν οι ίσες ευθείες γραμμές παράγονται περαιτέρω τότε οι γωνίες κάτω από την βάση είναι ίσες.<ref>Ευκλείδης ,Βιβλίο 1 ,πρόταση 5,σελίδα 251</ref>Το όνομά του μπορεί να αποδοθεί στον συχνό ρόλο του ως το πρώτο πραγματικό testτεστ στα ''Στοιχεία'' της κατανόησης του αναγνώστη και ως γέφυρα στις πιο δύσκολες προτάσεις που ακολουθούν.Επίσης μπορεί και να ονομάστηκε έτσι λόγω της ομοιότητας των γεωμετρικών σχημάτων με μία απότομη γέφυρα που μόνο ένας αλάνθαστος γάιδαρος θα μπορούσε να διασχίσει.<ref>Heath "Excursis 1" τόμος 1</ref>
 
=== Ισότητα Τριγώνων ===
Λόγω της θεμελιώδους θέσης της Ευκλείδειας γεωμετρίας στα μαθηματικά, θα ήταν αδύνατο να δοθεί παραπάνω από ένα αντιπροσωπευτικό δείγμα των εφαρμογών.
 
Όπως φαίνεται από την ετυμολογία της λέξης , ένας από τους πρώτους λόγους για το ενδιαφέρον προς την γεωμετρία ήταν η [[χωρομέτρηση]]<ref>Ball , σελίδα 5</ref> (μέτρηση του χώρου),και ορισμένα πρακτικά αποτελέσματα από την Ευκλείδεια γεωμετρία ,όπως η κυριότητα της ορθής γωνίας ενός 3-4-5 τριγώνου , χρησιμοποιούνταν αρκετό καιρό πριν αποδειχθούν και επίσημα.<ref>Eves , τόμος 1,σελίδα 5, Mlodinow σελίδα 7</ref>Οι θεμελιώδεις τύποι των μετρήσεων στην Ευκλείδεια γεωμετρία είναι αποστάσεις και γωνίες.Αυτές οι δύο ποσότητες μπορούν να υπολογιστούν κατευθείαν από έναν τοπογράφο.Ιστορικά οι αποστάσεις μετριόταν συνήθως με αλυσίδες όπως για παράδειγμα οι λεγόμενες [[Gunter'sαλυσίδες chainsΓκάντερ]], ενώ για την μέτρηση των γωνιών χρησιμοποιούνταν κύκλοι και αργότερα ο [[θεοδόλιχος]].
 
Μία εφαρμογή της Ευκλείδειας στερεάς γεωμετρίας είναι [[ο καθορισμός των ρυθμίσεων συσκευασίας]](δηλαδή το πακετάρισμα όλων των αντικειμένων σε ένα κιβώτιο ή σε όσο το δυνατόν λιγότερα κιβώτια γίνεται), όπως η εύρεση του πιο αποτελεσματικού τρόπου [[συσκευασίας σφαιρών]] σε n διαστάσεις.Το πρόβλημα αυτό έχει εφαρμογή στην [[ανίχνευση και διόρθωση σφαλμάτων]].
Η Γεωμετρία χρησιμοποιείται εκτενώς και στην [[αρχιτεκτονική]].
 
Χρησιμοποιείται επίσης και στον σχεδιασμό [[Οριγκάμι|Origami.οριγκάμι]]. Κάποια [[κλασσικά προβλήματα γεωμετρίας]] είναι αδύνατο να λυθούν με την χρήση [[Κανόνας (μαθηματικά)|χάρακα]] και [[Διαβήτης (όργανο)|διαβήτη]] αλλά μπορούν να λυθούν με την μέθοδο [[Οριγκάμι|Origamiοριγκάμι]].<ref>Tom Hull , "Origami and Geometric Constructions".</ref>
 
== Ως περιγραφή της δομής του χώρου ==
Όπως θα δούμε και παρακάτω, η [[Θεωρία της Σχετικότητας]] του [[Άλμπερτ Αϊνστάιν|Αϊνστάιν]] τροποποιεί σημαντικά αυτή την θεωρία.
 
Ο διφορούμενος χαρακτήρας των αξιωμάτων όπως διατυπώθηκαν αρχικά από τον Ευκλείδη δημιούργησε αρκετές διαφωνίες και υπαινιγμούς σχετικά με την δομή του χώρου, όπως αν είναι άπειρος ή όχι <ref>Heath , σελίδα 200</ref>και ποια είναι η [[Τοπολογικός χώρος|τοπολογία]] του.Στην σύγχρονη εποχή οι πιο αυστηρές αναδιατυπώσεις του συστήματος<ref>π.χ. Tarski (1951)</ref> έχουν ως στόχο έναν καλύτερο διαχωρισμό αυτών των ζητημάτων.Ερμηνεύοντας τα αξιώματα του Ευκλείδη με μία πιο μοντέρνα και σύγχρονη προσέγγιση , τα αξιώματα 1-4 έχουν μία συνέπεια ως προς τον άπειρο ή πεπερασμένο χώρο(όπως στην [[ελλειπτική γεωμετρία]]).Επίσης και τα 5 αξιώματα έχουν μία συνέπεια ως προς την ποικιλία των τοπολογιών(για παράδειγμα ένα επίπεδο, ένας κύλινδρος, ή ένα [[torusτόρος]] για την δισδιάστατη Ευκλείδεια γεωμετρία).
 
== Μεταγενέστερα έργα ==
[[Αρχείο:Squaring the circle.svg|μικρογραφία|Τετραγωνίζοντας τον κύκλο:Τα εμβαδά αυτού του τετραγώνου και του κύκλου είναι ίσα.Το 1882 αποδείχθηκε ότι αυτό το σχέδιο δεν μπορεί να κατασκευαστεί σε ένα πεπερασμένο αριθμό βημάτων με έναν "ιδανικό" [[Κανόνας (μαθηματικά)|χάρακα]] και [[Διαβήτης (όργανο)|διαβήτη]].|183x183εσ]]Οι μαθηματικοί που ασχολούνταν με την γεωμετρία τον 18ο αιώνα δυσκολεύονταν αρκετά να καθορίσουν τα όρια του Ευκλείδειου συστήματος. Αρκετοί από αυτούς μάταια προσπαθούσαν να αποδείξουν το 5ο αξίωμα χρησιμοποιώντας τα προηγούμενα 4 αξιώματα.Μέχρι το 1763 υπήρχαν τουλάχιστον 28 αποδείξεις οι οποίες είχαν δημοσιευτεί, όμως όλες ήταν λάθος.<ref>Hofstadter 1979 , σελίδα 91</ref>
 
Κατά την διάρκεια του 18ου αιώνα οι μαθηματικοί προσπάθησαν επίσης να καθορίσουν τι έργα μπορούσαν να επιτευχθούν στην Ευκλείδεια γεωμετρία. Για παράδειγμα το πρόβλημα της [[τριχοτόμησης μιας γωνίας]] ,το οποίο αναφέρεται στην θεωρία, μιας και τα αξιώματα αναφέρονται σε τέτοιες δραστηριότητες οι οποίες μπορούν να υλοποιηθούν με χάρακα και διαβήτη(μέθοδος της λεγόμενης "Κινηματικής Γεωμετρίας"). Ωστόσο και ύστερα από αιώνες αποτυχημένων προσπαθειών για να βρεθεί μια λύση, το 1837 ο [[PierreΠιέρ WantzelΒανζέλ]] έφερε στην δημοσιότητα την απόδειξη ότι μία τέτοια κατασκευή ήταν αδύνατο να γίνει. Άλλες επίσης κατασκευές που αποδείχθηκε ότι είναι αδύνατο να υλοποιηθούν είναι ο [[διπλασιασμός του κύβου]], ο [[τετραγώνισμος του κύκλου]]. Στην περίπτωση του διπλασιασμού του κύβου αυτό που κάνει αδύνατη την κατασκευή του είναι ότι η μέθοδος της "Κινηματικής Γεωμετρίας" περιλαμβάνει εξισώσεις δεύτερης τάξης<ref>Theorem 120, Elements of Abstract Algebra, Allan Clark, Dover, ISBN 0-486-64725-0</ref> ,ενώ ο διπλασιασμός του κύβου απαιτεί την επίλυση εξισώσεως τρίτης τάξης.
 
=== 19ος αιώνας και μη Ευκλείδεια Γεωμετρία ===
18

επεξεργασίες