Διαφορά μεταξύ των αναθεωρήσεων του «Αρμονική συνάρτηση»

<blockquote>Εάν Μ και Ν είναι δυο πολλαπλότητες Ριμαν, τότε μια αρμονική απεικόνιση u: M <math>\rightarrow</math> N ορίζεται να είναι ένα κρίσιμο σημείο της ενέργειας Ντιριχλετ</blockquote><blockquote><math>D[u] = \frac{1}{2}\int_M \|du\|^2\,d\operatorname{Vol}</math></blockquote><blockquote>όπου {{nowrap|''du'' : ''TM'' &rarr; ''TN''}} είναι το διαφορικό της u, και η νόρμα είναι αυτή που συμπεριλαμβάνεται από τη μετρική στο Μ και αυτή στο Ν στο εξωτερικό γινόμενο ''T''*''M'' ⊗ ''u''<sup>&#x2212;1</sup> ''TN.''</blockquote>Σημαντικές ειδικές περιπτώσεις αρμονικών απεικονίσεων μεταξύ πολλαπλοτήτων αποτελούν οι ελάχιστες επιφάνειες, οι οποίες είναι ακριβώς εκείνες οι αρμονικές ενθέσεις μιας επιφάνειας στον τρισδιάστατο Ευκλείδειο χώρο. Γενικότερα,οι ελάχιστες υποπολλαπλότητες είναι αρμονικές ενθέσεις μιας πολλαπλότητας στην άλλη. Οι αρμονικές συντεταγμένες είναι αρμονικοί διφεομορφισμοί από μια πολλαπλότητα σε ένα ανοιχτό υποσύνολο της ίδιας διάστασης στον Ευκλείδειο χώρο.
 
 
[[Κατηγορία:Αρμονικές συναρτήσεις]]
{{Portal bar|Μαθηματικά}}
{{authority control}}
 
[[Κατηγορία:Αρμονικές συναρτήσεις| ]]
64.642

επεξεργασίες