Άνοιγμα κυρίου μενού

Αλλαγές

3 bytes προστέθηκαν, πριν από 3 έτη
μ
μικροδιορθώσεις κ διορθώσεις συνδέσμων
|ταχύτητα του ήχου=972 m/s
}}
Το '''ήλιο''' (''helium'') είναι το [[χημικό στοιχείο]] με [[ατομικός αριθμός|ατομικό αριθμό]] 2 και [[ατομική μάζα]] 4,002602 [[amu]]. Αντιπροσωπεύεται από το σύμβολο '''He'''. Είναι [[χρώμα|άχρωμο]], [[όσφρηση|άοσμο]], [[γεύση|άγευστο]], μη [[τοξικολογία|τοξικό]], [[ιδανικό αέριο|ιδανικό]], μονοατομικό [[αέριο]], που είναι επικεφαλής (πρώτο) των [[ευγενή αέρια|ευγενών αερίων]] του [[Περιοδικός πίνακας των χημικών στοιχείων|Περιοδικού Συστήματος των Χημικών στοιχείων]]. Το [[σημείο ζέσεως]] και το [[σημείο τήξης]] του είναι τα χαμηλότερα που υπάρχουν ανάμεσα σε όλες τις [[χημικές ουσίες]]. Ουσιαστικά παραμένει αέριο εκτός αν είναι κάτω από εξαιρετικές συνθήκες.
 
Το ήλιο είναι το δεύτερο (2<sup>ο</sup>), μετά το [[υδρογόνο]], πιο άφθονο χημικό στοιχείο στο [[σύμπαν]] και υπολογίστηκε ότι αποτελεί το 24% της στοιχειακής μάζας του [[Γαλαξίας|Γαλαξία]] μας. Η μάζα του αντιστοιχεί στο 12πλάσιο της συνολικής μάζας όλων των βαρύτερων από το ήλιο στοιχείων (μαζί). Είναι άφθονο στον [[Ήλιος|Ήλιο]] και στο [[Δίας (πλανήτης)|Δία]]. Το γεγονός αυτό (της μεγάλης αφθονίας του στο σύμπαν) εξηγείται από τη μεγάλη [[ενέργεια πυρηνικής σύζευξης]] ανά [[νουκλεόνιο]] του <sup>4</sup>He σε σχέση με τα επόμενα τρία (3) χημικά στοιχεία (δηλαδή σε σχέση με το [[λίθιο]], το [[βηρύλλιο]] και το [[βόριο]]). Η ενέργεια αυτή εξηγεί την αυξημένη [[πιθανότητα]] σχηματισμού του, τόσο κατά την [[πυρηνική σύντηξη]], όσο και κατά τη [[ραδιενέργεια|ραδιενεργή διάσπαση]]. Το περισσότερο ήλιο στο σύμπαν πιστεύεται ότι σχηματίστηκε κατά τη [[Μεγάλη Έκρηξη]]. Κάποια νέα ποσότητα ηλίου παράγεται κατά την πυρηνική σύντηξη υδρογόνου στα [[άστρο|άστρα]] με [[μάζα]] από 0,5 ηλιακή μάζα και πάνω.
 
Το ήλιο ονομάστηκε έτσι από τον [[αρχαία Ελλάδα|αρχαίο ελληνικό]] θεό [[Ήλιος (μυθολογία)|Ήλιο]], επειδή ανακαλύφθηκε για πρώτη φορά ωεως μια άγνωστη κίτρινη [[φασματοσκοπία|φασματική]] χαρακτηριστική γραμμή στο [[ηλιακό φάσμα]], κατά τη διάρκεια της [[ηλιακή έκλειψη|ηλιακής έκλειψης]] του [[1868]], από το [[Γαλλία|Γάλλο]] [[αστρονομία|αστρονόμο]] [[Τζουλς Ζανσέν]] (''Jules Janssen''). Ο Ζανσέν πιστώθηκε την ανακάλυψη του ηλίου μαζί με τον [[Τζόζεφ Λόκυερ]] (''Joseph Norman Lockyer''), που παρατήρησε επίσης την ίδια έκλειψη και πρότεινε πρώτος ότι η φασματική αυτή γραμμή ήταν εξαιτίας ενός νέου (για την εποχή) στοιχείου, που ονόμασε «ήλιο». Η τυπική ανακάλυψη του ήλιου (στη [[Γη]]) έγινε το [[1895]], από τους [[Σουηδία|Σουηδούς]] [[χημεία|χημικούς]] [[Περ Τιοντόρ Κλέβε]] (''Per Teodor Cleve'') και [[Νηλς Αβραάμ Λάγκετ]] (''Nils Abraham Langlet'', που βρήκαν ήλιο που προέρχονταν από το [[ορυκτό]] [[κλεβεΐτης|κλεβεΐτη]] του [[ουράνιο|ουρανίου]]. Το [[1903]], μεγάλα αποθέματα ηλίου βρέθηκαν σε πεδία [[φυσικό αέριο|φυσικού αερίου]] σε διάφορα μέρη των [[ΗΠΑ]], που είναι ακόμη ο κύριος (παγκόσμιος) προμηθευτής του αερίου.
 
Το ήλιο χρησιμοποιήθηκε στην [[κρυογενική]] (είναι η μεγαλύτερη χρήση του, που καταναλώνει περίπου το 1/4 της παραγωγής του) και η ψύξη [[μαγνήτης|μαγνητών]] [[υπεραγωγιμότητα]]ς, με ειδικότερη εμπορική εφαρμογή τους [[μαγνητική τομογραφία|σαρωτές MRI]]. Άλλες [[βιομηχανία|βιομηχανικές]] χρήσης του είναι ως αέριο συμπίεσης και καθαρισμού και ως μια προστατευτική ατμόσφαιρα για [[Ηλεκτροσυγκόλληση τόξου|συγκόλληση με τόξο]] και διεργασίες όπως η ανάπτυξη [[κρύσταλλος|κρυστάλλων]] για την παραγωγή [[γκοφρέτα πυριτίου|γκοφρετών πυριτίου]], με κατανάλωση ποσότητας που αντιστοιχεί στη μισή από τη συνολική χρήση του. Υπάρχουν και οικονομικά ελάσσονος σημασίας χρήσεις του, από τις οποίες οι πιο δημοφιλείς είναι ως ανυψωτικό αέριο για [[αερόστατο|αερόστατα]], [[Ζέπελιν (αερόπλοιο)|αερόπλοια]] και παιδικά μπαλόνια<ref>[http://www.photonics.com/Article.aspx?AID=35225 Helium: Up, Up and Away?] Melinda Rose, Photonics Spectra, Oct. 2008. Accessed Feb 27, 2010. For a more authoritative but older 1996 pie chart showing U.S. helium use by sector, showing much the same result, see the chart reproduced in "Applications" section of this article.</ref>. Όπως κάθε αέριο που έχει διαφορετική [[πυκνότητα]] από τη [[μέσος όρος|μέση]] του [[ατμόσφαιρα|ατμοσφαιρικού αέρα]], μια [[αναπνοή|εισπνοή]] μικρού όγκου του ηλίου από [[άνθρωπος|άνθρωπο]] έχει ως αποτέλεσμα την προσωρινή αλλαγή της [[συχνότητα]]ς και της [[χροιά]]ς της φωνής του. Στην επιστημονική έρευνα, η συμπεριφορά των δύο (2) ρευστών φάσεων του <sup>4</sup>He, του ήλιου-I και του ήλιου-II, είναι σημαντική για τους ερευνητές της [[κβαντομηχανική]]ς (και ειδικότερα για το [[φαινόμενο]] της [[υπερρευστότητα]]ς) και για όσους ερευνούν φαινόμενα όπως η υπεραγωγιμότητα, που παράγεται από [[ύλη]] που βρίσκεται σε [[θερμοκρασία|θερμοκρασίες]] κοντά στο [[απόλυτο μηδέν]].
[[Αρχείο:Helium spectrum.jpg|left|200px|thumb|Φασματικές γραμμές ηλίου στο ορατό τμήμα του ηλεκτρομαγνητικού φάσματος]]
Το ήλιο είναι το μοναδικό χημικό στοιχείο που ανακαλύφθηκε πρώτα έξω από τη Γη, πριν αποδειχθεί ότι υπάρχει και σε αυτήν.
Η πρώτη ένδειξη για την ύπαρξη του ηλίου παρατηρήθηκε στις 18 Αυγούστου του [[1868]] με τη μορφή μιας έντονη κίτρινης φασματικής γραμμής με [[μήκος κύματος]] 587,49 [[nm]] στο φάσμα απορρόφησης της χρωμόσφαιρας του [[Ήλιος|Ήλιου]] από τον Γάλλο αστρονόμο [[Τζουλς Ζανσέν]] (Jules Janssen) κατά τη διάρκεια της ολικής ηλιακής έκλειψης στο Γκουντούρ της [[Ινδία]]ς<ref>Kochhar, R. K. (1991). "French astronomers in India during the 17th - 19th centuries". Journal of the British Astronomical Association 101 (2): 95–100. http://articles.adsabs.harvard.edu//full/1991JBAA..101...95K/0000100.000.html. Retrieved 2008-07-27.</ref><ref name="Emsley, John 2001 pp. 175">Emsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. pp. 175–179. ISBN 0-19-850341-5.</ref>. Η γραμμή αυτή βρίσκεται κοντά στις χαρακτηριστικές φασματικές γραμμές για το [[νάτριο]] και γι' αυτό αρχικά αποδόθηκε σ' αυτό το χημικό στοιχείο. Στις 20 Οκτωβρίου της ίδιας χρονιάς, ο Άγγλος αστρονόμος [[Τζόζεφ Λόκυερ]] (Joseph Norman Lockyer) παρατήρησε επίσης την κίτρινη γραμμή στο ηλιακό φάσμα. Την ονόμασε D<sub>3</sub> γραμμή [[Γιόζεφ φον Φράουνχοφερ|Φράουνοφερ]] (Fraunhofer), επειδή βρισκόταν κοντά στις αντίστοιχες D<sub>1</sub> και D<sub>2</sub> του [[νάτριο|νατρίου]]<ref name="Clifford A. Hampel 1968 pp. 256-268">Clifford A. Hampel (1968). The Encyclopedia of the Chemical Elements. New York: Van Nostrand Reinhold. pp. 256-268. ISBN 0-442-15598-0.</ref>. Τελικά, όμως, κατέληξε ότι προέρχονταν από ένα άλλο (από το νάτριο) χημικό στοιχείο, που υπάρχει στον Ήλιο, αλλά ήταν άγνωστο (τότε) στη Γη. Ο LockyerΛόκυερ και ο Άγγλος χημικός [[Έντουαρντ Φράνκλαντ]] (Edward Frankland) ονόμασαν το νέο (για την εποχή) χημικό στοιχείο «ήλιο», από την ελληνική λέξη για τον Ήλιο<ref>Sir Norman Lockyer - discovery of the element that he named helium" Balloon Professional Magazine, 07 Aug 2009.</ref><ref>"Helium". Oxford English Dictionary. 2008. http://dictionary.oed.com/cgi/entry/50104457?. Retrieved 2008-07-20.</ref><ref>Thomson, W. (1872). Frankland and Lockyer find the yellow prominences to give a very decided bright line not far from D, but hitherto not identified with any terrestrial flame. It seems to indicate a new substance, which they propose to call Helium. Rep. Brit. Assoc. xcix.</ref>.
 
Στη συνέχεια η ίδια κίτρινη γραμμή παρατηρήθηκε από τον [[Λουδοβίκος Παλμιέρι|Παλμιέρι]] (L. Palmieri) το [[1881]] στο φάσμα αερίων ηφαιστειακής προέλευσης από τον [[Βεζούβιος|Βεζούβιο]]. Στις 26 Μαρτίου [[1895]] ο Βρετανός χημικός [[Ουίλιαμ Ράμσεϊ|Σερ Ουίλιαμ Ράμσεϊ]] (Sir William Ramsay) απομόνωσε ήλιο στη Γη, επεξεργαζόμενος δείγμα του ορυκτού [[κλεβείτηςκλεβεΐτης|κλεβείτηκλεβεΐτη]] (μια ποικιλία του [[ουρανινίτης|ουρανινίτη]], που περιέχει τουλάχιστον 10% [[σπάνιες γαίες]]). Ο Ράμσεϊ αναζητούσε [[αργό]], αλλά διαχωρίζοντας το [[οξυγόνο]] και το [[άζωτο]] από τα αέρια που απελευθέρωσε με [[θειικό οξύ]], παρατήρησε κίτρινη φασματική γραμμή που ταίριαζε με την D<sub>3</sub> που είχε παρατηρηθεί στο ηλιακό φάσμα και είχε αποδοθεί στο χημικό στοιχείο ήλιο<ref name="Clifford A. Hampel 1968 pp. 256-268"/><ref>Ramsay, William (1895). "On a Gas Showing the Spectrum of Helium, the Reputed Cause of D3 , One of the Lines in the Coronal Spectrum. Preliminary Note". Proceedings of the Royal Society of London 58: 65–67. doi:10.1098/rspl.1895.0006.</ref><ref>Ramsay, William (1895). "Helium, a Gaseous Constituent of Certain Minerals. Part I". Proceedings of the Royal Society of London 58: 80–89. doi:10.1098/rspl.1895.0010.</ref><ref>Ramsay, William (1895). "Helium, a Gaseous Constituent of Certain Minerals. Part II--". Proceedings of the Royal Society of London 59: 325–330. doi:10.1098/rspl.1895.0097.</ref>. Τα δείγματα αυτά πιστοποιήθηκαν ότι ήταν ήλιο από τους Lockyer και William Crookes (Βρετανός φυσικός). Η ανεξάρτητη αυτή απομόνωση του χημικού στοιχείου έδωσε την ευκαιρία να προσδιορισθεί η [[ατομική μάζα]] του χημικού στοιχείου<ref name="Emsley, John 2001 pp. 175"/><ref>(German) Langlet, N. A. (1895). "Das Atomgewicht des Heliums" (in German). Zeitschrift für anorganische Chemie 10 (1): 289–292. doi:10.1002/zaac.18950100130.</ref><ref>Weaver, E.R. (1919). "Bibliography of Helium Literature". Industrial & Engineering Chemistry.</ref>. Το ήλιο επίσης απομονώθηκε από τον Αμερικανό [[Γεωχημεία|γεωχημικό]] [[Ουίλλιαμ Φράνσις Χίλλεμπραντ]] (William Francis Hillebrand) πριν από τον Ράμσεϊ, ο οποίος ανακάλυψε παράξενες φασματικές γραμμές σε δείγμα ορυκτού ουρανινίτη. Ο HillebrandΧίλλεμπραντ όμως απέδωσε αυτές τις φασματικές γραμμές στο άζωτο. Η συγχαρητήρια επιστολή του στον Ράμσεϊ προσφέρει μια ενδιαφέρουσα περίπτωση μιας σχεδόν ανακάλυψης που προηγήθηκε και μιας ανακάλυψης που ακολούθησε στην επιστήμη<ref>Munday, Pat (1999). John A. Garraty and Mark C. Carnes. ed. Biographical entry for W.F. Hillebrand (1853–1925), geochemist and US Bureau of Standards administrator in American National Biography. 10-11. Oxford University Press. pp. 808–9; pp. 227–8.</ref>. Η ουσιαστική διαφορά ήταν η επιπλέον διαδικασία διαχωρισμού από το [[άζωτο]] του Ράμσεϊ, που εμπόδισε τη λάθος ταύτιση της φασματικής γραμμής D<sub>3</sub>.
 
Το [[1907]] οι [[Έρνεστ Ράδερφορντ]] και [[Τόμας Ρόιντς]] (Thomas Royds) απέδειξαν πως τα σωματίδια α είναι πυρήνες <sup>4</sup>He, επιτρέποντας σε σωματίδια α να διέλθουν μέσα από λεπτά τοιχώματα [[γυαλί|γυαλιού]] κενού σωλήνα, να αποφορτισθούν στο εσωτερικό του και μελετώντας το φάσμα του εγκλωβισμένου, ηλίου πλέον. Το [[1908]] το ήλιο υγροποιήθηκε για πρώτη φορά από τον Ολλανδό φυσικό [[ΧέικεΧάικε Κάμερλινγκ ΌννεςΚάμερλιν]] (Heike Kamerlingh Onnes) ψύχοντας το αέριο σε θερμοκρασία μικρότερη από 1 Κ<ref>van Delft, Dirk (2008). "Little cup of Helium, big Science" (PDF). Physics today: 36–42. http://www-lorentz.leidenuniv.nl/history/cold/VanDelftHKO_PT.pdf. Retrieved 2008-07-20.</ref>. Προσπάθησε να το στερεοποιήσει κιόλας, αλλά απέτυχε επειδή το ήλιο δεν έχει [[τριπλό σημείο]], στο οποίο και οι τρεις φάσεις της ύλης συνυπάρχουν σε ισορροπία. Ο φοιτητής του ''Willem Hendrik Keesom'' κατόρθωσε τελικά να πάρει 1&nbsp; cm<sup>3</sup> στερεού ήλιου το [[1926]]<ref>Coldest Cold". Time Inc.. 1929-06-10. http://www.time.com/time/magazine/article/0,9171,751945,00.html. Retrieved 2008-07-27.</ref>.
 
Το [[1938]], ο Ρώσος φυσικός [[Πιοτρ ΛεονίδοβιτςΚαπίτσα|Πιοτρ Λεονίντοβιτς Καπίτσα]] (Pyotr Leonidovich Kapitsa) ανακάλυψε ότι το <sup>4</sup>He έχει σχεδόν μηδενικό [[ιξώδες]] σε θερμοκρασίες κοντά στους 0 Κ. Το φαινόμενο αυτό σήμερα ονομάζεται [[υπερρευστότητα]]<ref>Kapitza, P. (1938). "Viscosity of Liquid Helium below the λ-Point". Nature 141: 74. doi:10.1038/141074a0.</ref>. Το [[1972]], το ίδιο φαινόμενο παρατηρήθηκε για το <sup>3</sup>He, αλλά σε θερμοκρασίες ακόμη πιο κοντά στους 0 Κ, από τους Αμερικανούς φυσικούς [[Ντούγκλας Όσεροφφ]] (Douglas D. Osheroff), [[Ντάιβιντ Λη]] (David M. Lee) και [[Ρόμπερτ Ρίτσαρντσον]] (Robert C. Richardson). Το φαινόμενο αποδόθηκε στο συνδυασμό ζευγών [[φερμιόνιο|φερμιόνιων]] ηλίου σε [[μποζόνιο|μποζόνια]], σε αναλογία με τα [[ζεύγη ηλεκτρονίων του Κούπερ]] που παράγουν το φαινόμενο της [[υπεραγωγιμότητα]]ς<ref>Osheroff, D. D.; R. C. Richardson, D. M. Lee (1972). "Evidence for a New Phase of Solid He3". Phys. Rev. Lett. 28 (14): 885–888. doi:10.1103/PhysRevLett.28.885.</ref>.
 
== Παραγωγή και χρήση ==
 
Μετά από μια επιχείρηση εξόρυξης [[πετρέλαιο|πετρελαίου]] το [[1903]] στο [[Ντέξτερ]], στο [[Κάνσας]] των [[ΗΠΑ]] εκλύθηκε ένας πίδακας από ένα αέριο που δεν καίγονταν. Ο [[Γεωλογία|γεωλόγος]] της Πολιτείας [[Έρασμους Χάβορθ]] (Erasmus Haworth) συνέλεξε δείγματα αυτού του εκλυόμενου αερίου και τα πήρε μαζί του στο [[Πανεπιστήμιο του Κάνσας]] στο [[Λαβρένς]], όπου με τη βοήθεια των [[Χημεία|χημικών]] [[Χάμιλτον Κάντυ]] (Hamilton Cady) και [[ΝταίηβιντΝτέιβιντ ΜακΦάρλαντ]] (David McFarland), ανακάλυψαν ότι η σύνθεσή του κατ' όγκο ήταν 72% [[άζωτο]], 15% [[μεθάνιο]] (που καιγόταν μόνο με αρκετό καθαρό [[οξυγόνο]]), 1% [[υδρογόνο]] και 12% ένα άγνωστης ταυτότητας αέριο.<ref name="nbb">{{Cite book| author = Emsley, John| title = Nature's Building Blocks| publisher = Oxford University Press| year = 2001| location = Oxford| pages = 175–179| isbn = 0-19-850341-5}}</ref><ref>{{Cite journal|author = McFarland, D. F. |title = Composition of Gas from a Well at Dexter, Kan |volume = 19|pages = 60–62 |year = 1903 |accessdate=2008-07-22 |journal = Transactions of the Kansas Academy of Science |doi = 10.2307/3624173|jstor = 3624173}}</ref>. Μετά από πιο λεπτομερή [[χημική ανάλυση]] διαπίστωσαν ότι αυτό το αέριο αποτελούνταν από ήλιο, σε ποσοστό 1,84%, κατ' όγκο, ως προς το αρχικό δείγμα.<ref>{{cite web|publisher=[[American Chemical Society]]|year=2004|url=http://acswebcontent.acs.org/landmarks/landmarks/helium/helium.html|title=The Discovery of Helium in Natural Gas|accessdate=2008-07-20}}</ref><ref>{{Cite journal|author = Cady, H.P. |coauthors = McFarland, D. F.|title = Helium in Natural Gas |journal = Science |volume = 24 |issue = 611|page = 344 |doi = 10.1126/science.24.611.344 |year = 1906 |pmid = 17772798}}</ref>. Αυτό το περιστατικό έδειξε ότι παρ' όλο που συνολικά το ήλιο είναι σπάνιο στη Γη, υπήρχε σε μεγάλα αποθέματα κάτω από τις [[Αμερικανικές Μεγάλες Πεδιάδες]], διαθέσιμο για εξόρυξη, ως παραπροϊόν του [[φυσικό αέριο|φυσικού αερίου]]<ref>{{Cite journal|author = Cady, H.P.; McFarland, D. F.|title = Helium in Kansas Natural Gas |journal = Transactions of the Kansas Academy of Science |volume = 20 |pages = 80–81 |year = 1906|accessdate=2008-07-20 |doi = 10.2307/3624645|jstor = 3624645}}</ref>. Τα μεγαλύτερα αποθέματα ηλίου βρίσκονταν στο [[Χιούστον]] και στα γύρω ρου πεδία φυσικού αερίου, στο Νοτιοδυτικό [[Κάνσας]] και σε παραφυάδες τους στο [[Τέξας]] και την [[Οκλαχόμα]].
 
Με αυτόν τον τρόπο οι [[ΗΠΑ]] έγιναν η μεγαλύτερη προμηθεύτρια χώρα ηλίου παγκοσμίως. Ακολουθώντας μια πρόταση του [[Σαρ Ρίτσαρντ Θρέιφαλλ]] (Richard Threlfall), το [[Πολεμικό Ναυτικό των ΗΠΑ]] ανέλαβε τη χορηγία των μικρών πειραματικών [[εργοστάσιο|εργοστασίων]] ηλίου, κατά τον [[Α΄ Παγκόσμιος Πόλεμος|Α΄ Παγκόσμιο Πόλεμο]]. Ο στόχος ήταν να εφοδιάζει τα προπετάσματα [[αερόστατο|αεροστάτων]] με το μη αναφλέξιμο ήλιο, που όμως ήταν κι αυτό ελαφρύτερο από τον [[ατμόσφαιρα|ατμοσφαιρικό αέρα]]. Συνολικά παρήχθησαν 5.700 m<sup>3</sup> ηλίου καθαρότητας 92% από αυτό το πρόγραμμα, αν και προηγουμένως λαμβάνονταν λιγότερο από 1 m<sup>3</sup> <ref name=enc>{{Cite book|title= The Encyclopedia of the Chemical Elements |pages =256–268 |author = Clifford A. Hampel |location=New York |isbn = 0-442-15598-0 |year = 1968 |publisher =Van Nostrand Reinhold}}</ref>. Κάποιες ποσότητες από αυτό το ήλιο χρησιμοποιήθηκαν για να γεμιστεί το πρώτο παγκοσμίως [[αερόπλοιο]], το C-7 του Πολεμικού Ναυτικού των ΗΠΑ., που πραγματοποίησε το παρθενικό του ταξείδιταξίδι από το [[Χάμπτον Ρόαντς]] της [[Βιρτζίνια]] στο [[ΜπόλλιγκΜπόλλινγκ ΦιελντΦιλντ]] της [[Πολιτεία Ουάσινγκτον|Πολιτείας Ουάσιγκτον]], την 1<sup>η</sup> Δεκεμβρίου του [[1921]]<ref>{{Cite book|editor=Emme, Eugene M. comp. |title=Aeronautics and Astronautics: An American Chronology of Science and Technology in the Exploration of Space, 1915–1960 |year=1961 |pages=11–19 |chapter=Aeronautics and Astronautics Chronology, 1920–1924 |chapterurl=http://www.hq.nasa.gov/office/pao/History/Timeline/1920-24.html |publisher=[[NASA]] |location=Washington, D.C. |accessdate=2008-07-20}}</ref>.
 
Παρόλο που η διαδικασία εξόρυξης και απομόνωσης, χρησιμοποιώντας τεχνικές χαμηλής [[θερμοκρασία]]ς [[υγροποίηση]] αερίων, δεν είχε αναπτυχθεί σημαντικά κατά τη διάρκεια του Α΄Παγκοσμίου Πολέμου, η παραγωγή του αερίου συνεχίστηκε. Το ήλιο χρησιμοποιήθηκε τότε ως ανυψωτικό αέριο για τα ελαφρύτερα από τον αέρα [[αεροσκάφος|αεροσκάφη]], δηλαδή τα διαφόρων τύπων και χρήσεων αεροστάτων και αερόπλοιων. Η ζήτηση του αερίου γι' αυτήν τη χρήση αυξήθηκε επίσης και κατά το [[Β΄ Παγκόσμιος Πόλεμος|Β΄ Παγκόσμιο Πόλεμο]], αλλά άρχισε να αυξάνεται η ζήτησή του και για προστασία από [[ηλεκτροσυγκόληση|ηλεκτροσυγκόλησης με τόξο]]. Το [[φασματόμετρο μάζας|φασματόμετρο μάζας ηλίου]] ήταν ακόμη ζωτικό για το [[Σχέδιο Μανχάταν|Πρόγραμμα Μανχάταν]], για την ανάπτυξη της [[Ατομική βόμβα|πυρηνικής βόμβας]] από τις ΗΠΑ<ref>{{Cite book|chapter=Leak Detection|author=Hilleret, N.|publisher=[[CERN]]|title=CERN Accelerator School, vacuum technology: proceedings: Scanticon Conference Centre, Snekersten, Denmark, 28 May&nbsp;– 3 June 1999 |editor=S. Turner |location=Geneva, Switzerland|url=http://doc.cern.ch/yellowrep/1999/99-05/p203.pdf |format=PDF| year=1999 |pages=203–212 |quote=At the origin of the helium leak detection method was the Manhattan Project and the unprecedented leak-tightness requirements needed by the uranium enrichment plants. The required sensitivity needed for the leak checking led to the choice of a mass spectrometer designed by Dr. A.O.C. Nier tuned on the helium mass.}}</ref>.
Η Κυβέρνηση των ΗΠΑ δημιούργησε το «[[Εθνικό Απόθεμα Ηλίου των ΗΠΑ]]» (National Helium Reserve) το [[1925]] στο [[Αμαρίλο]] του [[Τέξας]] με στόχο να εξασφαλίζει την προμήθεια ηλίου για τα πολεμικά αερόπλοια της χώρας σε περίπτωση [[πόλεμος|πολέμου]] και για τα πολιτικά αερόπλοια, σε κατάσταση ειρήνης<ref name=enc/>. Εξαιτίας του στρατιωτικού [[εμπάργκο]] των ΗΠΑ κατά της [[Γερμανία]]ς, η τελευταία είχε έλλειψη σε προμήθειες ηλίου κατά το Β΄ Παγκόσμιο Πόλεμο, με αποτέλεσμα το αερόπλοιο [[LZ 129 Χίντενμπουργκ]] να αναγκαστεί να χρησιμοποιήσει [[υδρογόνο]] ως ανυψωτικό αέριο. Η ζήτηση του ηλίου μετά το Β΄ Παγκόσμιο Πόλεμο αποκλιμακώθηκε προσωρινά, αλλά η ύπαρξη του Εθνικού Αποθέματος Ηλίου των ΗΠΑ επεκτάθηκε μέχρι τη δεκαετία του [[1950]], για να εξασφαλίσει, αυτήν τη φορά, την προμήθεια ηλίου για την ψύξη [[πύραυλος|πυραύλων]] που χρησιμοποιούσαν ζεύγος υδρογόνου και οξυγόνου (ως καύσιμο και [[οξειδωτικό]]), κατά τον [[Αγώνας Κατάκτησης του Διαστήματος|Αγώνα Κατάκτησης του Διαστήματος]] και τον [[Ψυχρός πόλεμος|Ψυχρό Πόλεμο]], γενικότερα. Η ζήτηση του ηλίου στις ΗΠΑ το [[1965]] έφτασε το οκταπλάσιο της κορύφωσης της ζήτησής του, κατά την πολεμική περίοδο<ref>{{Cite journal| doi = 10.2307/3627447| author = Williamson, John G.| title = Energy for Kansas| journal = Transactions of the Kansas Academy of Science| volume = 71| issue = 4| pages = 432–438| publisher = Kansas Academy of Science|year =1968| accessdate = 2008-07-27| jstor = 3627447}}</ref>.
 
Μετά την «Τροποποίηση των πράξεων για το ήλιο του 1960» (Helium Acts Amendments of 1960, Public Law 86–777), το [[Γραφείο των ΗΠΑ για τα ορυχεία]] (U.S. Bureau of Mines, ένας [[Δημόσιος Οργανισμός]] των ΗΠΑ) αδειοδότησε την κατασκευή πέντε (5) ιδιωτικών εργοστασίων παραγωγής ηλίου από φυσικό αέριο. Γι' αυτό το πρόγραμμα «διατήρησης του ηλίου», το παραπάνω Γραφείο δημιούργησε ένα δίκτυο σωλήνων μεταφοράς του αερίου, συνολικού μήκους 684&nbsp;km χλμ., από το [[Μπάστον]] του [[Κάνσας]], για να συνδέσει τα παραπάνω αναφερόμενα εργοστάσια με το μερικώς εξαντλημένο κρατικό πεδίο αερίων στο ΚλίφφσάιντΚλίφφσαϊντ (Cliffside gas field), κοντά στο Αμαρίλο του Τέξας. Ένα [[μείγμα]] ηλίου - [[άζωτο|αζώτου]] αποθηκεύτηκε εκεί, ως απόθεμα ανάγκης, οπότε το ήλιο θα καθαρίζονταν περισσότερο από το άζωτο<ref>{{Cite journal|journal = Federal Register|date = 2005-10-06|volume = 70|issue = 193|page = 58464|url = http://edocket.access.gpo.gov/2005/pdf/05-20084.pdf|format=PDF| title = Conservation Helium Sale |accessdate=2008-07-20}}</ref>.
 
Μέχρι το [[1995]], συνολικά 1.000.000.000 m<sup>3</sup> του αερίου είχαν συλλεχθεί και αποθεματοποιηθεί, με κόστος 1.400.000.000 $ (ΗΠΑ), οδηγώντας το [[Κογκρέσο των Ηνωμένων Πολιτειών|Κογκρέσο των ΗΠΑ]] το [[1966]] σε ψήφισμα τερματισμού του προγράμματος αποθεματοποίησης<ref name="nbb"/><ref name="stwertka">Stwertka, Albert (1998). ''Guide to the Elements: Revised Edition''. New York; Oxford University Press, p. 24. ISBN 0-19-512708-0</ref>. Το σχετικό ψήφισμα ονομάστηκε «Πράξη για την Αποθεματοποίηση του Ηλίου του 1996» (Helium Privatization Act of 1996, Public Law 104–273)<ref>Helium Privatization Act of 1996 {{USPL|104|273}}</ref> δίνοντας εντολή στο [[Υπουργείο Εσωτερικών ΗΠΑ]] (Department of the Interior) να αδειάσει το απόθεμα μέχρι το [[2005]]<ref>{{cite web| url = http://www.nap.edu/openbook/0309070384/html/index.html|title = Executive Summary |publisher = nap.edu |accessdate=2008-07-20}}</ref>.
 
Το ήλιο που παράγονταν μεταξύ του [[1930]] και του [[1945]] ήταν περίπου 98,3% καθαρό ήλιο και το υπόλοιπο άζωτο και ήταν ικανοποιητικό ανυψωτικό για τα αερόπλοια. Από το [[1945]], άρχισε να παράγεται μια (σχετικά) μικρή ποσότητα ηλίου με καθαρότητα 99,9%, για τη χρήση προστασίας κατά την ηλεκτροσυγκόλληση με τόξο. Μέχρι το [[1949]], έγιναν διαθέσιμες για εμπορική χρήση ποσότητες ηλίου «βαθμού καθαρότητας Α», δηλαδή 99,95%<ref>{{Cite book|publisher=Bureau of Mines / Minerals yearbook 1949|year=1951|author=Mullins, P.V.; Goodling, R. M.| title = Helium|pages = 599–602 |url = http://digicoll.library.wisc.edu/cgi-bin/EcoNatRes/EcoNatRes-idx?type=div&did=ECONATRES.MINYB1949.PVMULLINS&isize=text|accessdate=2008-07-20}}</ref>.
 
Για πολλά χρόνια οι ΗΠΑ παρήγαγαν πάνω από το 90% του ηλίου που χρησιμοποιούνταν εμπορικά σ' όλον τον κόσμο, ενώ άλλες μονάδες παραγωγής, στον [[Καναδάς|Καναδά]], στην [[Πολωνία]], στη [[Ρωσία]] και σε άλλα κράτη παρήγαγαν το υπόλοιπο. Στα μέσα της δεκαετίας του [[1990]], άρχισε να λειτουργεί μια νέα μονάδα στο [[Άρζεγ]], στην [[Αλγερία]], παρήγαγε 17.000.000 m<sup>3</sup>, παραγωγή αρκετή να καλύψει τη ζήτηση όλης της [[Ευρώπη]]ς σε ήλιο. Στο μεταξύ, μέχρι το έτος [[2000]], η κατανάλωση ηλίου μέσα στις ΗΠΑ άρχισε να αυξάνεται με ρυθμό πάνω από 15.000 τόννους το χρόνο<ref>{{cite web|url=http://minerals.usgs.gov/ds/2005/140/helium-use.pdf|format=PDF| title= Helium End User Statistic|accessdate = 2008-07-12|publisher = U.S. Geological Survey|accessdate=2008-07-20}}</ref>. Στην περίοδο [[2004]]-[[2006]], δημιουργήθηκαν δύο πρόσθετες μονάδες παραγωγής, ένα στο [[Ρας Λάφφεν]], του [[Κατάρ]] και το άλλο στη [[Σκίκντα]] της Αλγερίας. ΄Έτσι, η Αλγερία έγινε η δεύτερη ηλιοπαραγωγός χώρα<ref name="wwsupply">{{Cite journal
[[Αρχείο:Helium-II-creep.svg|150px|thumb|right|Το υπέρρευστο ήλιο σκαρφαλώνει τα τοιχώματα του δοχείου υπερνικώντας την βαρύτητα.]]
Το ήλιο είναι αέριο άχρωμο, άοσμο, άγευστο και μη-τοξικό. Έχει το χαμηλότερο [[σημείο βρασμού]] από κάθε άλλο χημικό στοιχείο ενώ είναι το μοναδικό υγρό το οποίο είναι αδύνατο να παγώσει μόνο με την ελάττωση της θερμοκρασίας. Είναι απαραίτητη και η αύξηση της πίεσης. Επίσης είναι το μοναδικό υλικό που δεν διαθέτει [[τριπλό σημείο]], δηλαδή ένα συνδυασμό θερμοκρασίας και πίεσης στον οποίο συνυπάρχουν σε ισορροπία και οι τρεις καταστάσεις της ύλης – στερεό, υγρό και αέριο.
[[Αρχείο:HeTube.jpg|right|thumb|150px|Λάμπα που περιέχει μέσα ήλιο]]
 
Στη φύση απαντάται σε δύο σταθερά [[ισότοπα]], <sup>3</sup>He και <sup>4</sup>He, από τα οποία το πρώτο απαντάται σπάνια. Όπως [[Αρχείο:HeTube.jpg|right|thumb|150px|Λάμπα που περιέχει μέσα ήλιο]]όλα τα ευγενή αέρια έχει σταθερή ηλεκτρονική διαμόρφωση και το άτομό του είναι άπολο και σφαιρικό. Είναι το πιο αδρανές χημικό στοιχείο και οι μόνες αλληλεπιδράσεις μεταξύ των ατόμων είναι ασθενείς [[δυνάμεις van der Waals]].
 
Έχει τη μικρότερη διαλυτότητα στο νερό από κάθε άλλο γνωστό αέριο, ενώ ο [[δείκτης διάθλασης]] είναι πιο κοντά στη μονάδα από κάθε άλλο γνωστό αέριο.
Το ήλιο δεν είναι τοξικό και ανευρίσκεται σε πολύ μικρές ποσότητες στο αίμα των ανθρώπων.
 
== ΑναφορέςΠαραπομπές και σημειώσεις ==
{{παραπομπές|230em}}
 
== Πηγές ==
25.107

επεξεργασίες