Διαφορά μεταξύ των αναθεωρήσεων του «Αριθμητική ανάλυση»

Τόσο το αρχικό πρόβλημα όσο και ο αλγόριθμος που χρησιμοποιούνται για την επίλυση αυτού του προβλήματος μπορούν να είναι καλά κατασκευασμένα και/ή άσχημα κατασκευασμένα, και κάθε συνδιασμός είναι πιθανός.
 
Έτσι, ένας αλγόριθμος που λύνει ένα καλά κατασκευασμένο πρόβλημα μπορεί να είναι είτε αριθμητικά σταθερός είτε αριθμητικά ασταθής. Μια τέχνη της αριθμητικής ανάλυσης είναι η εύρεση ένας σταθερού αλγόριθμου για την επίλυση ενός καλά κατασκευασμένου μαθηματικού προβλήματος. Για παράδειγμα, ο υπολογισμός της τετραγωνικής ρίζας του 2, (η οποίο είναι περίπου 1,41421) είναι ένα καλά ορισμένο πρόβλημα. Πολλοί αλγόριθμοι λύνουν αυτό το πρόβλημα, ξεκινώντας με μια αρχική προσέγγιση του ''x''<sub>1</sub> ως <math>\sqrt{2}</math>, για παραράδειγμα ''x''<sub>1</sub>=1.4, και υπολογίζοντας στη συνέχεια τις βελτιωτικές εικασίες ''x''<sub>2</sub>, ''x''<sub>3</sub>, κτλ... Μία τέτοια μέθοδος είναι η γνωστή ως Bαβυλώνια μέθοδος, η οποία δίνεται από τύπο ''x''<sub>''k''+1</sub> = ''x<sub>k</sub>''/2 + 1/''x<sub>k</sub>''. Μία άλλη επανάληψη, την οποία θα ονομάζουμε μέθοδο Χ, δίνεται από τον τύπο ''x''<sub>''k'' + 1</sub> = (''x''<sub>''k''</sub><sup>2</sup>&minus;2)<sup>2</sup> + ''x''<sub>''k''</sub>.<ref>This is a [[fixed point iteration]] for the equation <math>x=(x^2-2)^2+x=f(x)</math>, whose solutions include <math>\sqrt{2}</math>. The iterates always move to the right since <math>f(x)\geq x</math>. Hence <math>x_1=1.4<\sqrt{2}</math> converges and <math>x_1=1.42>\sqrt{2}</math> diverges.</ref> Έχουμε υπολογίσει μερικές επαναλήψεις του κάθε συστήματος σε μορφή πίνακα, με τις αρχικές εικασίες ''x''<sub>1</sub> = 1.4 και ''x''<sub>1</sub> = 1.42.
 
 
75.211

επεξεργασίες