Ουρανός (πλανήτης): Διαφορά μεταξύ των αναθεωρήσεων

Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Spiros790 (συζήτηση | συνεισφορές)
μΧωρίς σύνοψη επεξεργασίας
Γραμμή 115:
 
== Εσωτερική δομή ==
Η μάζα του Ουρανού είναι περίπου 14,5 φορές μεγαλύτερη της Γης, καθιστώντας τον, τον λιγότερο ογκώδη μεταξύ των μεγάλων πλανητών. Ωστόσο, η διάμετρός του είναι ελαφρώς μεγαλύτερη από αυτή του Ποσειδώνα, περίπου τέσσερις φορές η διάμετρος της Γης. Μία συνολική πυκνότητα 1,27 g / cm ³ κάνει τον Ουρανό το δεύτερο λιγότερο πυκνό πλανήτη, μετά τον Κρόνο.<ref name=Seidelmann2007/><ref name=Jacobson1992>{{cite journal|last=Jacobson|first=R.A.|coauthors=Campbell, J.K.; Taylor, A.H.; Synnott, S.P.|title=The masses of Uranus and its major satellites from Voyager tracking data and Earth-based Uranian satellite data|journal=The Astronomical Journal|volume=103|issue=6|pages=2068–2078|year=1992|doi=10.1086/116211| bibcode=1992AJ....103.2068J}}</ref> Η τιμή αυτή υποδεικνύει ότι αποτελείται από διάφορους πάγους, όπως του νερού, της αμμωνίας και του μεθανίου.<ref name=Podolak1995>{{cite journal|last=Podolak|first=M.|coauthors=Weizman, A.; Marley, M.|title=Comparative models of Uranus and Neptune|journal=Planet. Space Sci.|volume=43|issue=12|pages=1517–1522|year=1995| bibcode=1995P%26SS...43.1517P|doi=10.1016/0032-0633(95)00061-5}}</ref> Η συνολική μάζα των παγωμένων υλικών στο εσωτερικό του Ουρανού δεν είναι επακριβώς γνωστή, καθώς διαφορετικά στοιχεία προκύπτουν ανάλογα με το μοντέλο που έχει επιλεγεί· ωστόσο, πρέπει να είναι μεταξύ 9,3 και 13,5 γήινων μαζών.<ref name=Podolak1995/><ref name=Podolak2000>{{cite journal|last= Podolak|first=M.|coauthors=Podolak, J.I.; Marley, M.S.|title=Further investigations of random models of Uranus and Neptune |journal=Planet. Space Sci.|volume=48|pages=143–151|year=2000| bibcode=2000P%26SS...48..143P|doi=10.1016/S0032-0633(99)00088-4}}</ref> Το [[υδρογόνο]] και το [[ήλιο]] αποτελούν μόνο ένα μικρό μέρος του. Συνολικά, με μάζα μεταξύ 0,5 και 1,5 γήινων μαζών.<ref name=Podolak1995/> Το υπόλοιπο μέρος της μάζας που δεν είναι παγωμένο (0,5 - 3,7 γήινες μάζες) εξηγείται από βραχώδη υλικά.<ref name=Podolak1995/>
 
[[Αρχείο:Inside of Urano.jpg|thumb|left|Απεικόνιση του εσωτερικού του Ουρανού.]]
Γραμμή 129:
 
Με βάση παρατηρήσεις το 2012<ref>Lawrence A. Sromovsky1, P. M. Fry1, H. B. Hammel2, I. de Pater3, K. A. Rages4
1Univ. of Wisconsin-Madison, 2AURA, 3Univ. of California, Berkeley, 4SETI Institute. , [http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=0c4ef272-ee5b-4597-87f6-82b480f196af&cKey=d2607048-5b6f-4cc4-bbba-e23af2a507a7&mKey=%7BC752C15A-58ED-4FA6-9B4A-725245476867%7D First Views of North Polar Clouds and Circulation on Uranus]</ref>, είναι γνωστό πως στον πλανήτη οι άνεμοι πνέουν συνήθως από τα ανατολικά, με ταχύτητες που φτάνουν τα 900 χιλιόμετρα την ώρα, ενώ στο βόρειο πόλο διακρίνονται φορά ρεύματα μεταφοράς θερμότητας. Η θερμοκρασία της ατμόσφαιρας είναι περιορισμένη στους -240 βαθμούς Κελσίου.<ref>[http://news.in.gr/science-technology/article/?aid=1231218397 Ο γαλάζιος Ουρανός βγάζει για πρώτη φορά τη μάσκα], in.gr, 19 Οκτ. 2012</ref>
 
=== Σύνθεση ===
Η σύνθεση της Ουράνιας ατμόσφαιρας είναι διαφορετική από τη σύνθεση ολόκληρου του πλανήτη, επειδή αποτελείται κυρίως από μοριακό [[υδρογόνο]] και ήλιο. Το μοριακό κλάσμα του ηλίου, δηλαδή ο αριθμός των ατόμων ηλίου ανά μόριο αερίου, είναι 0,15 ± 0,03 στην ανώτερη τροπόσφαιρα,<ref name=Conrath1987>{{cite journal|unused_data=DUPLICATE DATA: year=1987|author=Conrath, B. ''et al.''|title=The helium abundance of Uranus from Voyager measurements|journal=Journal of Geophysical Research|volume=92|pages=15003–15010|year=1987|bibcode=1987JGR....9215003C|doi=10.1029/JA092iA13p15003}}</ref> που αντιστοιχεί σε κλάσμα μάζας 0,26 ± 0,05. Η τιμή αυτή είναι πολύ κοντά στο πρωτοηλιακό κλάσμα μάζας του ηλίου 0.275 ± 0,01,<ref name=Lodders2003>{{cite journal|last=Lodders|first= Katharin|title= Solar System Abundances and Condensation Temperatures of the Elements|journal=The Astrophysical Journal|volume=591|pages=1220–1247 |year=2003|doi=10.1086/375492|bibcode=2003ApJ...591.1220L}}</ref> που δείχνει ότι το ήλιο δεν έχει μετακινηθεί προς το κέντρο του πλανήτη, όπως συνέβη στους γίγαντες αερίου. Το τρίτο πιο άφθονο συστατικό της ατμόσφαιρας του Ουρανού είναι το [[μεθάνιο]] (CH4). Το μεθάνιο έχει εξέχουσες [[ζώνη απορρόφησης|ζώνες απορρόφησης]] στο [[φως|ορατό]] και στο εγγύς [[υπέρυθρο]] (IR) φάσμα, καθιστώντας τον Ουρανό γαλαζοπράσινου ή κυανού χρώματος. Τα μόρια μεθανίου αντιπροσωπεύουν το 2,3% της ατμόσφαιρας από το μοριακό κλάσμα κάτω από το επίπεδο του σύννεφου μεθανίου στο επίπεδο πίεσης 1,3 bar (130 kPa)· αυτό αντιπροσωπεύει περίπου 20 με 30 φορές την αφθονία άνθρακα που βρέθηκε στον Ήλιο. Η αναλογία ανάμειξης είναι πολύ χαμηλότερη στην ανώτερη ατμόσφαιρα, λόγω της εξαιρετικά χαμηλής θερμοκρασίας της, η οποία υποβαθμίζει το επίπεδο κορεσμού και προκαλεί στο επιπλέον μεθάνιο πήξη.<ref name=Bishop1990>{{cite journal|last=Bishop|first=J.|coauthors=Atreya, S.K.; Herbert, F.; and Romani, P.|title=Reanalysis of Voyager 2 UVS Occultations at Uranus: Hydrocarbon Mixing Ratios in the Equatorial Stratosphere|journal=Icarus|volume=88|pages=448–463|year=1990| doi=10.1016/0019-1035(90)90094-P| url=http://www-personal.umich.edu/~atreya/Articles/1990_Reanalysis.pdf|format=PDF}}</ref> Η αφθονία των λιγότερο πτητικών ενώσεων, όπως η αμμωνία, το νερό και το υδρόθειο στην κατώτερη ατμόσφαιρα είναι ελάχιστα γνωστές. Ωστόσο, είναι πιθανόν να είναι επίσης υψηλότερες από αυτές του Ήλιου.<ref name=Lunine1993/><ref name=dePater1989>{{cite journal|last= dePater|first=Imke|coauthors=Romani, Paul N.; Atreya, Sushil K.|title=Uranius Deep Atmosphere Revealed|journal=Icarus|volume=82|issue=12|pages=288–313|year=1989|doi=10.1016/0019-1035(89)90040-7| url=http://www-personal.umich.edu/~atreya/Articles/1989_Uranus_Deep_Atm.pdf|format=PDF}}</ref> Μαζί με το μεθάνιο, ίχνη διαφόρων υδρογονανθράκων βρίσκονται στη στρατόσφαιρα του Ουρανού, οι οποίοι πιστεύεται ότι παράχθηκαν από μεθάνιο το οποίο υπέστη [[φωτόλυση]] από την ηλιακή [[υπεριώδης ακτινοβολία|υπεριώδη ακτινοβολία]] (UV). Περιλαμβάνουν [[αιθάνιο]] (C2H6), [[ακετυλένιο]] (C2H2), [[προπίνιο]] (CH3C2H) και διακετυλένιο (C2HC2H).<ref name=Burdorf2006>{{cite journal|last=Burgorf|first=Martin|coauthors=Orton, Glenn; van Cleve, Jeffrey; et al.|title=Detection of new hydrocarbons in Uranus' atmosphere by infrared spectroscopy|journal=Icarus|volume=184|year=2006|pages=634–637| doi=10.1016/j.icarus.2006.06.006| bibcode=2006Icar..184..634B}}</ref><ref name=Encrenaz2003/> Η [[φασματοσκοπία]] αποκάλυψε, επίσης, ίχνη υδρατμών, μονοξειδίου του άνθρακα και διοξειδίου του άνθρακα στην ανώτερη ατμόσφαιρα, τα οποία μπορεί μόνο να κατάγονται από μια εξωτερική πηγή, όπως από σκόνη και τους [[κομήτης|κομήτες]].<ref name=Encrenaz2003>{{cite journal|last=Encrenaz |first=Therese|title=ISO observations of the giant planets and Titan: what have we learnt?|journal=Planet. Space Sci.|volume=51| pages=89–103|year=2003|doi=10.1016/S0032-0633(02)00145-9| bibcode=2003P%26SS...51...89E}}</ref><ref name=Encrenaz2004>{{cite journal|last=Encrenaz|first=Th.|coauthors=Lellouch, E.; Drossart, P.|title=First detection of CO in Uranus|journal=Astronomy & Astrophysics|year=2004|volume=413|pages=L5–L9|doi=10.1051/0004-6361:20034637| url=http://www-personal.umich.edu/~atreya/Articles/2004_First_Detection.pdf|format=PDF|accessdate=2007-08-05}}</ref>
 
== Δορυφόροι ==
Γραμμή 151:
Οι παρατηρήσεις του Voyager αποκάλυψαν ότι το μαγνητικό πεδίο είναι ιδιαίτερο, τόσο επειδή δεν προέρχεται από το γεωμετρικό κέντρο του πλανήτη, όσο και επειδή έχει κλίση 59 ° ως προς τον άξονα περιστροφής.<ref name=1986Ness>{{cite journal|last=Ness|first=Norman F.|coauthors=Acuna, Mario H.; Behannon, Kenneth W.; et al. |title=Magnetic Fields at Uranus|journal=Science|volume=233|pages=85–89|year=1986|bibcode=1986Sci...233...85N |doi=10.1126/science.233.4759.85 |pmid=17812894|issue=4759}}</ref> Στην πραγματικότητα, το μαγνητικό δίπολο μετατοπίζεται από το κέντρο του πλανήτη προς το Νότιο πόλο περιστροφής έως και κατά το ένα τρίτο της ακτίνας του πλανήτη. Αυτή η ασυνήθιστη γεωμετρία έχει ως αποτέλεσμα μία εξαιρετικά ασύμμετρη μαγνητόσφαιρα, όπου η ένταση του μαγνητικού πεδίου στην επιφάνεια στο νότιο ημισφαίριο μπορεί να είναι τόσο χαμηλή της τάξεως του 0,1 Gauss (10 μT), ενώ στο βόρειο ημισφαίριο μπορεί να είναι τόσο υψηλή όσο 1,1 gauss (110 μT).<ref name=1986Ness/> Ο μέσος όρος πεδίου στην επιφάνεια είναι 0,23 [[gauss]] (23 μT).<ref name=1986Ness/> Σε σύγκριση, το μαγνητικό πεδίο της Γης είναι περίπου το ίδιο ισχυρό είτε στους πόλους είτε στο «μαγνητικό ισημερινό" της και είναι περίπου παράλληλο προς τη γεωγραφική ισημερινό του. Η διπολική ροπή του Ουρανού είναι 50 φορές αυτή της Γης.<ref name=Russell993>{{cite journal|last=Russell|first=C.T.|title= Planetary Magnetospheres |journal=Rep. Prog. Phys.|volume=56|pages=687–732|year=1993|doi= 10.1088/0034-4885/56/6/001}}</ref> Ο Ποσειδώνας έχει ομοίως μετατοπισμένο και εκλινές μαγνητικό πεδίο, γεγονός που υποδηλώνει ότι αυτό μπορεί να είναι ένα κοινό χαρακτηριστικό των γιγάντων του πάγου. Μια υπόθεση είναι ότι, σε αντίθεση με τα μαγνητικά πεδία των χερσαίων και των γιγάντιων αερίων, τα οποία παράγονται εντός των πυρήνων τους, στους γίγαντες πάγου τα μαγνητικά πεδία μάλλον δημιουργούνται από την κίνηση σε σχετικά μικρά βάθη, για παράδειγμα, στον ωκεανό νερού-αμμωνίας.<ref name=Atreya2006/><ref>{{cite journal|last=Stanley|first=Sabine|coauthors=Bloxham, Jeremy|title=Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields|journal=Letters to Nature|volume=428|issue=6979|pages=151–153| url=http://mahi.ucsd.edu/johnson/ES130/stanley2004-nature.pdf|format=PDF|accessdate=2007-08-05|year=2004|pmid=15014493|doi=10.1038/nature02376|archiveurl = http://web.archive.org/web/20070807213745/http://mahi.ucsd.edu/johnson/ES130/stanley2004-nature.pdf |archivedate = August 7, 2007|deadurl=yes}}</ref>
 
Όταν παρατηρήθηκε το 1986 από το Βόγιατζερ 2, ο Ουρανός έχει σχετικά καλά ανεπτυγμένο πολικό σέλας, το οποίο φαινόταν σαν λαμπερά τόξα γύρω από τους μαγνητικούς πόλους.<ref name="Herbert & Sandel 1999">{{cite journal | title=Ultraviolet observations of Uranus and Neptune | author=Floyd Herbert, Bill R. Sandel | journal=Planetary and Space Science | year=1999 | month=Αύγουστος-Σεπτέμβριος | volume=47 | issue=8-9 | pages=1119–1139 | doi=10.1016/S0032-0633(98)00142-1}}</ref> Το 2011 το πολικό σέλας παρατηρήθηκε ύστερα από προσεκτικά προγραμματισμένες παρατηρήσεις από το [[Διαστημικό Τηλεσκόπιο Χαμπλ]]. Το πολικό σέλας του Ουρανού ήταν βραχύβιο, με διάρκεια λίγων λεπτών, και φαινόταν σαν λαμπερές κηλίδες, αρκετά διαφορετικό από αυτό που παρατήρησε το Βόγιατζερ. Η διαφορά στην εμφάνιση πιθανόν οφείλεται στο γεγονός ότι το Βόγιατζερ πέρασε κοντά από τον πλανήτη στο ηλιοστάσιό του, όταν ο μαγνητικός άξονας του πλανήτη είχε μεγάλη κλίση ως προς τον ηλιακό άνεμο, ενώ οι παρατηρήσεις από το Χαμπλ έγιναν κοντά στην ισημερία, όταν οι μαγνητικοί πόλοι δείχνουν προς στον Ήλιο μια φορά την ημέρα. Επίσης, το φαινόμενο το 1986 ήταν πιο έντονο στην πλευρά του πλανήτη που δεν φωτίζεται και που δεν μπορεί να παρατηρηθεί από τη Γη.<ref>{{cite press release | url=http://www.agu.org/news/press/pr_archives/2012/2012-19.shtml | title=Uranus auroras glimpsed from Earth | accessdate=2013-07-23 | date=13 Απριλίου 2013 | publisher=American Geophysical Union}}</ref> Αντίθετα με τον Δία, το σέλας του Ουρανό μοιάζει να μην είναι σημαντικό για την ενεργειακή ισορροπία στην θερμόσφαιρα του πλανήτη.<ref name="Lam Miller et al. 1997">{{cite journal | title=Variation in the H3+ Emission of Uranus | author=Hoanh An Lam, Steven Miller, Robert D. Joseph, Thomas R. Geballe, Laurence M. Trafton, Jonathan Tennyson καιGilda E. Ballester | journal=The Astrophysical Journal Letters | year=1997 | month=Ιανουάριος | volume=474 | issue=1 | pages=L73 | doi=10.1086/310424}}</ref>
 
== Παρατήρηση ==
Γραμμή 160:
 
== Παραπομπές ==
{{Παραπομπές|230em}}
 
== Πηγές ==