Κόλουρο κυβοκτάεδρο: Διαφορά μεταξύ των αναθεωρήσεων

μ
καμία σύνοψη επεξεργασίας
μΧωρίς σύνοψη επεξεργασίας
| συμμετρία= [[Οκταεδρική συμμετρία|οκταεδρική (''O''<sub>h</sub>)]]
| διαμόρφωση= [[Image:Great rhombicuboctahedron vertfig.png|50px]]<br />(4.6.8)
| συζυγέςδυϊκό= [[Image:Disdyakis dodecahedron.png|50px]]<br />[[Δισδυάκις δωδεκάεδρο|Δισδυάκις<br />δωδεκάεδρο]]
| ανάπτυγμα= [[Image:Truncated cuboctahedron flat.svg|100px]]
}}
Στη [[στερεομετρία]], το '''κόλουρο κυβοκτάεδρο''' (ή μεγάλο ρομβοκυβοκτάεδρο) είναι ένα [[Κυρτότητα|κυρτό]] [[ημικανονικό πολύεδρο]], που ανήκει στα [[Στερεό του Αρχιμήδη|στερεά του Αρχιμήδη]]. Διαθέτει 26 έδρες: 12 τετράγωνα, 8 κανονικά εξάγωνα και 6 κανονικά οκτάγωνα. Έχει 48 κορυφές και 72 ακμές.
 
Οι 12 τετραγωνικές έδρες του πολυέδρου είναι συνεπίπεδες με τις 12 έδρες του [[Ρομβικό δωδεκάεδρο|ρομβικού δωδεκαέδρου]], το οποίο είναι [[ΣυζυγέςΔυϊκό πολύεδρο|συζυγέςδυϊκό]] του [[κυβοκτάεδρο]]υ, εξού και το δεύτερο όνομά του, ''μεγάλο ρομβοκυβοκτάεδρο'' (συγκρίνατε με το [[Ρομβοκυβοκτάεδρο|μικρό ρομβοκυβοκτάεδρο]]).
 
== Γεωμετρικά χαρακτηριστικά κόλουρου κυβοκτάεδρου ==
|}
 
Κατασκευαστικά, το κόλουρο κυβοκτάεδρο μπορεί να προέλθει από τον [[Κύβος|κύβο]], εάν αποκοπούν όλες οι κορυφές του και όλες οι ακμές του. Με τον ίδιο τρόπο μπορεί να προέλθει και από το συζυγέςδυϊκό πολύεδρο του κύβου, το [[οκτάεδρο]].
 
Το όνομα ''κόλουρο κυβοκτάεδρο'', το οποίο δόθηκε από τον [[Γιοχάνες Κέπλερ|Κέπλερ]], είναι κάπως παραπλανητικό, επειδή αν αποκοπούν οι κορυφές του [[κυβοκτάεδρο]]υ, τότε στη θέση τους σχηματίζονται ορθογώνια παραλληλόγραμμα και όχι τετράγωνα. Ωστόσο, το αποτέλεσμα είναι [[Τοπολογία|τοπολογικά]] ισοδύναμο με το κόλουρο κυβοκτάεδρο.
248

επεξεργασίες