Απολλώνιο πρόβλημα: Διαφορά μεταξύ των αναθεωρήσεων

Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Gts-tg (συζήτηση | συνεισφορές)
Χωρίς σύνοψη επεξεργασίας
Γραμμή 284:
Το απολλώνιο πρόβλημα μπορεί να επεκταθεί από το επίπεδο σε [[σφαίρα|σφαιρική επιφάνεια]] και άλλες δευτεροβάθμιες επιφάνειες. Για την σφαίρα, το πρόβλημα συνίσταται στην κατασκευή όλων των κύκλων (όρια των [[σφαιρική τομή|σφαιρικών τομών]]) που εφάπτονται σε τρεις δοσμένους κύκλους επί της σφαίρας.<ref name="gergonne_1814" /><ref name="carnot_1803b" >{{cite book| author = [[Lazare Carnot|Carnot L]]| year = 1803| title = Géométrie de position| publisher = Unknown publisher| location = Paris| pages = 415, §356}}</ref><ref name="vanson_1855" >{{cite journal| author = Vannson| year = 1855| title = Contact des cercles sur la sphère, par la geométrie| journal = Nouvelles Annales de Mathématiques| volume = XIV| pages = 55–71}} {{fr icon}}</ref> Αυτό το σφαιρικό πρόβλημα μπορεί να μετασχηματιστεί σε επίπεδο πρόβλημα χρησιμοποιώντας [[στερεογραφική προβολή]]. Αφού κατασκευαστούν οι λύσεις στο επίπεδο πρόβλημα μπορούν να καθοριστούν οι λύσεις του του σφαιρικού προβλήματος με αντιστροφή της στερεογραφικής προβολής. Ακόμα γενικότερα, μπορεί να θεωρηθεί το πρόβλημα τεσσάρων εφαπτόμενων καμπυλών που προκύπτουν από την τομή τυχαίων δευτεροβάθμιων επιφανειών με τέσσερα επίπεδα, όπως προτάθηκε για πρώτη φορά από τον ''[[Charles Dupin]].<ref name="altshiller-court_1961" />
 
Λύνοντας το απολλώνιο πρόβλημα επαναληπτικά για την εύρεση των εγγεγραμμένων κύκλων, τα κενά μεταξύ των εφαπτόμενων κύκλων μπορούν να πληρωθούν αυθαίρετα, σχηματίζοντας το [[απολλώνιο έμβυσμα]], γνωστή και ως ''Leibniz packing'' ή ''Apollonian packing''.<ref>{{cite journal| author = Kasner E, Supnick F| year = 1943| title = The Apollonian packing of circles| journal = Proc. Natl. Acad. Sci. USA| volume = 29| pages = 378–384| doi = 10.1073/pnas.29.11.378| pmid = 16588629| month = Dec| issue = 11| issn = 0027-8424| url = http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16588629| format = Free full text}}</ref> Αυτό το έμβυσμα είναι [[φράκταλ]], όντας αυτοόμοιο και έχοντας [[διάσταση Hausdorff]] ''d'' η οποία δεν είναι μεν γνωστή με ακρίβεια αλλά είναι της τάξης του 1,3,<ref name="boyd_1973">{{cite journal| author = Boyd DW| year = 1973| title = Improved Bounds for the Disk Packing Constants| journal = Aeq. Math.| volume = 9| pages = 99–106| doi = 10.1007/BF01838194}}<br />{{cite journal| author = Boyd DW| year = 1973| title = The Residual Set Dimension of the Apollonian Packing| journal = Mathematika| volume = 20| pages = 170–174}}<br />{{cite journal|last=McMullen|first= Curtis T|title= Hausdorff dimension and conformal dynamics III: Computation of dimension|url=http://abel.math.harvard.edu/~ctm/papers/home/text/papers/dimIII/dimIII.pdf|journal=American Journal of Mathematics|volume=120|year=1998|pages=691–721|format=PDF|doi=10.1353/ajm.1998.0031}}</ref> το οποίο είναι μεγαλύτερη από από μία [[κανονική καμπύλη|κανονική]] (ή πεπερασμένου μήκους) καμπύλη (''d'' = 1) αλλά μικρότερη από από αυτή του επιπέδου (''d'' = 2). Το απολλώνιο έμβυσμα περιγράφηκε για πρώτη φορά από τον [[Γκότφριντ Βίλχελμ Λάιμπνιτς]] τον 17ο αιώνα, και είναι καμπύλος πρόδρομος του [[Τρίγωνο Sierpiński|τριγώνου SierpińskiΣιερπίνσκι]].<ref>{{cite book| author = [[Benoit Mandelbrot|Mandelbrot B]]| year = 1983| title = The Fractal Geometry of Nature| publisher = W. H. Freeman| location = New York| isbn = 978-0716711865| page = 170}}<br />{{cite book| author = Aste T, [[Denis Weaire|Weaire D]]| year = 2008| title = In Pursuit of Perfect Packing| edition = 2nd| publisher = Taylor and Francis| location = New York| isbn = 978-1420068177| pages = 131–138}}</ref> Το απολλώνιο έμβυσμα έχει στενούς δεσμούς με άλλα πεδία των μαθηματικών, για παράδειγμα, είναι το οριακό σύνολο των [[σύνολα Klein|συνόλων Klein]].<ref>{{cite book| author = [[David Mumford|Mumford D]], Series C, Wright D| year = 2002| title = Indra's Pearls: The Vision of Felix Klein| publisher = Cambridge University Press| location = Cambridge| isbn = 0-521-35253-3| pages = 196–223}}</ref>
 
Η διάταξη με ένα κύκλο να εφάπτεται σε ''τέσσερις'' κύκλους στο επίπεδο έχει ειδικές ιδιότητες, οι οποίες διερευνήθηκαν από τον ''Larmor'' (1891)<ref name="larmor_1891">{{cite journal| author = Larmor A| year = 1891| title = Contacts of Systems of Circles| journal = Proc. London Math. Soc.| volume = 23| pages = 136–157| doi = 10.1112/plms/s1-23.1.135}}</ref> και τον ''Lachlan'' (1893).<ref name="lachlan_1893">{{cite book| author = Lachlan R| year = 1893| title = An elementary treatise on modern pure geometry| publisher = Macmillan| location = London| id = ASIN B0008CQ720| pages = §383–396, pp. 244–251| isbn = 1429700505}}</ref> Αυτή η διάταξη είναι και η βάση του [[Θεώρημα του Casey|θεωρήματος του Casey]],<ref name="casey_1881" /> όντας ταυτόχρονα και γενίκευση του [[Θεώρημα του Πτολεμαίου|θεωρήματος του Πτολεμαίου]].<ref name="johnson_1929" />