Διαφορά μεταξύ των αναθεωρήσεων του «Αρμονική συνάρτηση»

μ
ορθή γραφή
μ (ορθή γραφή)
Αρμονικές συναρτήσεις που προκύπτουν στη φυσική προσδιορίζονται από τα ανώμαλα σημεία και τις [[συνοριακές συνθήκες]] (όπως είναι οι οριακές συνθήκες Dirichlet ή οι Neumann οριακές συνθήκες). Στις περιοχές χωρίς όρια, προσθέτοντας το πραγματικό ή το φανταστικό μέρος κάθε συνάρτησης παράγεται μια αρμονική συνάρτηση με το ίδιο ανώμαλο σημείο. Σε αυτή την περίπτωση, η αρμονική συνάρτηση δεν καθορίζεται από το ανώμαλο σημείο της, ωστόσο, μπορούμε να κάνουμε τη λύση μοναδική  σε φυσικές καταστάσεις, απαιτώντας ότι η λύση τείνει στο 0, καθώς τείνουμε στο άπειρο. Η μοναδικότητα προκύπτει από το [[θεώρημα του Liouville]].
 
Τα ανώμαλα σημεία των παραπάνω αρμονικών συναρτήσεων εκφράζονται ως "φορτία" και "πυκνότητες φορτίων" χρησιμοποιώντας την ορολογία της [[Ηλεκτροστατική|ηλεκτροστατικής]]. Έτσι η αντίστοιχη αρμονική συνάρτηση θα είναι ανάλογη με το [[Ηλεκτρικό δυναμικό|ηλεκτροστατικό δυναμικό]] λόγω αυτών των κατανομών του φορτίου. Κάθε ανωτέρω συνάρτηση όταν πολλαπλασιαστεί με μια σταθερά, που περιστρέφεται, ή/και μια σταθερά που προστίθεται, θα παράξειπαραγάγει μια άλλη αρμονική συνάρτηση. Η [[Αντίστροφη συνάρτηση|αντιστροφή]] κάθε συνάρτησης, θα δώσει άλλη μια αρμονική συνάρτηση η οποία έχει ανώμαλα σημεία της εικόνες των αρχικών ανώμαλων σημείων σε ένα σφαιρικό "καθρέφτη". Ακόμη, το άθροισμα δύο αρμονικών συναρτήσεων θα δώσει άλλη μια αρμονική συνάρτηση.
 
Τέλος, παραδείγματα αρμονικών συναρτήσεων ''n'' μεταβλητών είναι:
475

επεξεργασίες