Σημείο: Διαφορά μεταξύ των αναθεωρήσεων

αφαίρεση κενού
(αλλαγή τόνου)
(αφαίρεση κενού)
Ο ορισμός του Ευκλείδη στην ουσία εννοεί ότι το σημείο δεν μπορεί να διασπαστεί, να τεμαχιστεί. Αυτή η έννοια υπάρχει και στην έννοια του [[άτομο]]υ του [[Δημόκριτος|Δημόκριτου]]. Όπως αναφέρει ο Διογένης ο Λαέρτιος, μεταφέροντας τις απόψεις του Πλάτωνα, τα πράγματα διακρίνονται σε αυτά που χωρίζονται σε μέρη(''«μεριστά»'') και αυτά που δεν χωρίζονται(''«ἀμέριστα»''). Δείγματα αυτών που δεν χωρίζονται αποτελούν η <span style="letter-spacing:0.09em;">''μονάδα''</span>(αριθμητική), το <span style="letter-spacing:0.09em;">''σημείο''</span>(γεωμετρία) και ο <span style="letter-spacing:0.09em;">''φθόγγος''</span>(μουσική).<ref><div style="display:inline; padding-right:200px; letter-spacing:0.08em;">«Τῶν ὄντων ἐστὶ τὰ μὲν μεριστά, τὰ δὲ ἀμέριστα. τούτων δὲ τῶν μεριστῶν τὰ μὲν ὁμοιομερῆ, τὰ δὲ ἀνομοιομερῆ. ἀμερῆ μὲν οὖν ἐστιν ὅσα μὴ ἔχει διαίρεσιν μηδὲ ἔκ τινος σύγκειται, οἷον ἥ τε μονὰς καὶ ἡ στιγμὴ καὶ ὁ φθόγγος· μεριστὰ δὲ ὅσα ἔκ τινος σύγκειται, οἷον αἵ τε συλλαβαὶ καὶ συμφωνίαι καὶ ζῷα καὶ ὕδωρ καὶ χρυσός. ὁμοιομερῆ ὅσα ἐξ ὁμοίων σύγκειται καὶ μηδὲν διαφέρει τὸ ὅλον τοῦ μέρους εἰ μὴ τῷ πλήθει, οἷον τὸ ὕδωρ καὶ τὸ χρυσίον καὶ πᾶν τὸ χυτὸν καὶ τὸ τοιοῦτον. ἀνομοιομερῆ δὲ ὅσα ἐξ ἀνομοίων μερῶν σύγκειται, οἷον οἰκία καὶ τὰ τοιαῦτα.»<br /></div>Διογένης Λαέρτιος, Βίοι καὶ γνῶμαι τῶν ἐν φιλοσοφίᾳ εὐδοκιμησάντων, Vit.3.107.6</ref> Η έννοια του σημείου είχε αποτελέσει στην αρχαιότητα, θέμα πολλών φιλοσοφικών συζητήσεων με σκοπό την κατανόηση και τον ορισμό του, αφού τέτοιες έννοιες αφορούν την φιλοσοφία της γεωμετρίας, αλλά και την φιλοσοφία γενικώς. Οι [[Πυθαγόρειοι φιλόσοφοι|Πυθαγόρειοι]] δίνουν ιδιαίτερη σημασία στην έννοια του ''σημείου'', και αποτελεί μάλιστα ακρογωνιαίο λίθο της γεωμετρίας τους, αλλά και της ευρύτερης κοσμοθεωρίας τους. Το ίδιο όμως ισχύει για όλες τις γεωμετρίες που έχουν δημιουργηθεί στις μέρες μας και στις οποίες ο ορισμός του σημείου αποτελεί σημαντικό και κρίσιμο θεωρητικό ζήτημα.
 
Στην Καρτεσιανή Γεωμετρία το σημείο ταυτίζεται με τις συντεταγμένες του. Έτσι π.χ. σε έναν [[Ευκλείδειος χώρος|Ευκλείδειο χώρο]] τριών διαστάσεων το σημείο ορίζεται ως η διατεταγμένη τριάδα (α,β,γ) , όπου τα α,β,γ είναι [[πραγματικοί αριθμοί]] και προσδιορίζουν το μήκος, το πλάτος και το ύψος. Στους πολυδιάστατους χώρους και γενικά σε ένα χώρο ''n'' διαστάσεων το σημείο ορίζεται από τις ''n'' συντετασυντεταγμένες του.
γμένες του.
 
==Παραπομπές==
Ανώνυμος χρήστης