Χρήστης:Dmtrs32/πρόχειρο: Διαφορά μεταξύ των αναθεωρήσεων

[[File:RuBisCOActiveSite2.png|thumb|Ενεργός χώρος του RuBisCO της ''Galdieria sulphuraria'' με CO<sub>2</sub>: Τα υπολείμματα που εμπλέκονται τόσο στην ενεργή θέση όσο και στη σταθεροποίηση του CO<sub>2</sub> για κατάλυση ενζύμων εμφανίζονται στο χρώμα και με ετικέτα. Οι αποστάσεις των αλληλεπιδράσεων σύνδεσης υδρογόνου φαίνονται σε αγγόστρομα. Το ιόν Mg<sup>2+</sup> (πράσινη σφαίρα) εμφανίζεται συντονισμένο με το CO<sub>2</sub> και ακολουθείται από τρία μόρια νερού (κόκκινες σφαίρες). Όλα τα υπόλοιπα υπολείμματα τοποθετούνται σε κλίμακα του γκρι.]]Η ενεργή θέση της RuBisCO της Galdieria sulphuraria με CO<sub>2</sub>: Τα υπολείμματα που εμπλέκονται τόσο στη δραστική θέση όσο και στο σταθεροποιητικό CO<sub>2</sub> για την κατάλυση ενζύμων εμφανίζονται με χρώμα και επισημαίνονται. Οι αποστάσεις των αλληλεπιδράσεων των δεσμών υδρογόνου φαίνονται σε angstroms. Το ιόν Mg2+ (πράσινη σφαίρα) εμφανίζεται συντονισμένο με το CO<sub>2</sub> και ακολουθείται από τρία μόρια νερού (κόκκινες σφαίρες). Όλα τα άλλα υπολείμματα τοποθετούνται σε κλίμακα του γκρι.
[[File:Plastomap of Arabidopsis thaliana.svg|thumb|Θέση του γονιδίου ''rbcL'' στο [[γονιδίωμα]] του [[Χλωροπλάστης|χλωροπλάστη]] του ''Arabidopsis thaliana'' (θέσεις περίπου 55-56,4 kb). Το ''rbcL'' είναι ένα από τα 21 γονίδια που κωδικοποιούν πρωτεΐνες που εμπλέκονται στη φωτοσύνθεση (πράσινα πλαίσια).]]
Στα φυτά, στα [[άλγη]], στα [[κυανοβακτήρια]] και στα [[Φωτότροφος|φωτοτροφικά]] και [[Χημειοτροφικός|χημειοαυτοτροφικά]] πρωτεοβακτήρια το ένζυμο αποτελείται συνήθως από δύο τύπους υπομονάδας πρωτεΐνης, που ονομάζονται η μεγάλη αλυσίδα ('''L''', περίπου 55.000 [[Ατομική μονάδα ατομικής μάζας | Da]]) και η μικρή αλυσίδα ('''S''', περίπου 13.000 Da). Το γονίδιο της'' μεγάλης αλυσίδας '' ('' rbcL '') κωδικοποιείται από το [[Χλωροπλάστης|χλωροπλάστη]] DNA στα φυτά.<ref>([https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3052726 Entrez] GeneID: )</ref> Τυπικά υπάρχουν αρκετά γονίδια σχετικά ''μικρής αλυσίδας'' στον [[πυρήνα κυττάρωνΚυτταρικός πυρήνας| πυρήνα]] των φυτικών κυττάρων και οι μικρές αλυσίδες εισάγονται στο διαμέρισμα στρωματικών χλωροπλαστών από το κυτταρόλυμα διασχίζοντας την εξωτερική μεμβράνη των χλωροπλαστών.<ref name="pmid15067115">{{cite journal | vauthors = Dhingra A, Portis AR, Daniell H | title = Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 101 | issue = 16 | pages = 6315–20 | date = April 2004 | pmid = 15067115 | pmc = 395966 | doi = 10.1073/pnas.0400981101 | bibcode = 2004PNAS..101.6315D }}</ref><ref name="pmid11401297">''[[Arabidopsis thaliana]]'' has four RuBisCO small chain genes.<br /> {{cite journal | vauthors = Yoon M, Putterill JJ, Ross GS, Laing WA | title = Determination of the relative expression levels of rubisco small subunit genes in Arabidopsis by rapid amplification of cDNA ends | journal = Analytical Biochemistry | volume = 291 | issue = 2 | pages = 237–44 | date = April 2001 | pmid = 11401297 | doi = 10.1006/abio.2001.5042 }}</ref> Οι ενζυματικά ενεργές θέσεις δέσμευσης του [[υπόστρωμαΥπόστρωμα (βιοχημείαχημεία) | υποστρώματος]] (1,5-διφωσφορική [[ριβουλόζη]] ) βρίσκονται στις μεγάλες αλυσίδες που σχηματίζονται διμερή στα οποία τα[[αμινοξύ|αμινοξέα]] από κάθε μεγάλη αλυσίδα συνεισφέρουν στις θέσεις σύνδεσης. Συνολικά οκτώ μεγάλες αλυσίδες (= 4 διμερή) και οκτώ μικρές αλυσίδες σχηματίζουν ένα μεγαλύτερο συγκρότημα περίπου 540.000 [[ΜονάδαΑτομική ατομικήςμονάδα μάζας|Da]].<ref>{{cite book |author1=Stryer, Lubert |author2=Berg, Jeremy Mark |author3=Tymoczko, John L. |title=Biochemistry |publisher=W.H. Freeman |location=San Francisco |year=2002 |isbn=978-0-7167-3051-4 |edition=5th |chapter=20. The Calvin Cycle and the Pentose Phosphate Pathway |quote=[https://www.ncbi.nlm.nih.gov/books/bv.fcgi?highlight=RuBisCO&rid=stryer.figgrp.2792 Figure 20.3. Structure of Rubisco.] (Color-coded ribbon diagram) |chapter-url=https://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=stryer |url-access=registration |url=https://archive.org/details/biochemistrychap00jere }}<br /></ref> Σε ορισμένα πρωτεοβακτήρια και [[Δινοφύκη|δυνοφύκη]], έχουν βρεθεί ένζυμα που αποτελούνται μόνο από μεγάλες υπομονάδες.<ref>The structure of RuBisCO from the photosynthetic bacterium ''[[Rhodospirillaceae|Rhodospirillum rubrum]]'' has been determined by [[X-ray crystallography]], see: {{Protein Data Bank|9RUB}}. A comparison of the structures of [[eukaryotic]] and [[bacterial]] RuBisCO is shown in the [[Protein Data Bank]] [http://nist.rcsb.org/pdb/molecules/pdb11_2.html feature article] on Rubisco.</ref>
Χρειάζονται ι[[Ιόν|όντα]] [[Μαγνήσιο|μαγνησίου]] (Mg<sup>2+</sup>) για την ενζυματική δραστηριότητα. Η σωστή τοποθέτηση των Mg<sup>2+</sup> στην ενεργή θέση του ενζύμου περιλαμβάνει την προσθήκη ενός "ενεργοποιητικού" μορίου [[Διοξείδιο του άνθρακα|διοξειδίου του άνθρακα]] στην ενεργή θέση μίας [[λυσίνη]] (σχηματίζοντας ένα καρβαμικό).<ref>[https://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mcb.figgrp.4496 Molecular Cell Biology], 4th edition, by Harvey Lodish, Arnold Berk, S. Lawrence Zipursky, Paul Matsudaira, David Baltimore and James E. Darnell. Published by W. H. Freeman & Co. (2000) New York. Online textbook. Figure 16-48 shows a structural model of the active site, including the involvement of magnesium. The Protein Data Bank feature article on RuBisCO also includes a model of [http://nist.rcsb.org/pdb/molecules/pdb11_3.html magnesium at the active site] {{Webarchive|url=https://web.archive.org/web/20060109143747/http://nist.rcsb.org/pdb/molecules/pdb11_3.html |date=2006-01-09 }}.</ref> Το Mg <sup> 2+ </sup> λειτουργεί οδηγώντας στην αποπρωτονίωση του υπολείμματος Lys210, με αποτέλεσμα το υπόλειμμα Lys να περιστρέφεται κατά 120 μοίρες προς το διαμορφομερές «trans», μειώνοντας την απόσταση μεταξύ του αζώτου της Lys και του άνθρακα του CO<sub>2</sub>. Η εγγύτητα επιτρέπει τον σχηματισμό ενός ομοιοπολικού δεσμού, με αποτέλεσμα το καρβαμιδικό.
<ref name=":2">{{cite journal | vauthors = Stec B | title = Structural mechanism of RuBisCO activation by carbamylation of the active site lysine | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 109 | issue = 46 | pages = 18785–90 | date = November 2012 | pmid = 23112176 | pmc = 3503183 | doi = 10.1073/pnas.1210754109 | bibcode = 2012PNAS..10918785S }}</ref> Το Mg<sup>2+</sup> ενεργοποιείται πρώτα για να συνδεθεί με την ενεργή θέση από την περιστροφή του His335 σε μια εναλλακτική διαμόρφωση. Το Mg<sup>2+</sup> στη συνέχεια συντονίζεται από τα υπολείμματα His της ενεργής θέσης (His300, His302, His335) και εξουδετερώνεται εν μέρει από το συντονισμό των τριών μορίων νερού και τη μετατροπή τους σε <sup>-</sup>OH.<ref name=":2" /> Αυτός ο συντονισμός καταλήγει σε ένα ασταθές σύμπλεγμα, αλλά παράγει ένα ευνοϊκό περιβάλλον για τη δέσμευση του Mg<sup>2+ </sup>. Ο σχηματισμός του καρβαμικού ευνοείται από ένα [[αλκαλικότητα Αλκάλια| αλκαλικό]] [[pH]]. Το pH και η [[συγκέντρωση]] ιόντων μαγνησίου στο διαμέρισμα ρευστού (στα φυτά, στο στρώμα του χλωροπλάστη<ref>The [https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=books&doptcmdl=GenBookHL&term=RuBisCO+AND+mcb%5Bbook%5D+AND+106599%5Buid%5D&rid=mcb.section.4493#4494 Lodish textbook] describes the localization of RuBisCO to the stromal space of chloroplasts. [https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=books&doptcmdl=GenBookHL&term=RuBisCO+stroma+AND+106623%5Buid%5D&rid=mcb.figgrp.4715 Figure 17-7] illustrates how RuBisCO small subunits move into the chloroplast stroma and assemble with the large subunits.</ref>) αυξάνεται στο φως. Ο ρόλος της αλλαγής των επιπέδων ιόντων pH και μαγνησίου στη ρύθμιση της δραστηκότητας του ενζύμου RuBisCO συζητείται [[#Regulation of the enzymatic activity | παρακάτω]]. Μόλις σχηματιστεί το καρβαμικό, το His335 ολοκληρώνει την ενεργοποίηση επιστρέφοντας στην αρχική του θέση μέσω θερμικής διακύμανσης.<ref name=":2" />
==Ενζυματική δραστηριότητα==
[[File:RuBisCO reaction CO2 or O2.svg|center|thumb|upright=2|Δύο κύριες αντιδράσεις του RuBisCo: CO<sub>2</sub> σταθεροποίηση και οξυγόνωση.]]
Η RuBisCO είναι ένα από τα πολλά ένζυμα στον [[Κύκλος του Κάλβιν|κύκλο του Κάλβιν]]. Όταν η Rubisco διευκολύνει την επίθεση του CO<sub>2 </sub> στον άνθρακα C2 του RuBP και την επακόλουθη διάσπαση δεσμών μεταξύ του άνθρακα C3 και C2, σχηματίζονται 2 μόρια 3-φωσφορικού γλυκερικού. Η μετατροπή περιλαμβάνει αυτά τα στάδια: ενολοποίηση, [[Καρβοξυλικά οξέα|καρβοξυλίωση]], ενυδάτωση, διάσπαση δεσμού C-C και [[πρωτονίωση]].<ref name="catalysis">{{cite journal | vauthors = Andersson I | title = Catalysis and regulation in Rubisco | journal = Journal of Experimental Botany | volume = 59 | issue = 7 | pages = 1555–68 | date = May 2008 | pmid = 18417482 | doi = 10.1093/jxb/ern091 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Erb TJ, Zarzycki J | title = A short history of RubisCO: the rise and fall (?) of Nature's predominant CO<sub>2</sub> fixing enzyme | journal = Current Opinion in Biotechnology | volume = 49 | pages = 100–107 | date = February 2018 | pmid = 28843191 | doi = 10.1016/j.copbio.2017.07.017 | pmc = 7610757 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Lundqvist T, Schneider G | title = Crystal structure of activated ribulose-1,5-bisphosphate carboxylase complexed with its substrate, ribulose-1,5-bisphosphate | journal = The Journal of Biological Chemistry | volume = 266 | issue = 19 | pages = 12604–11 | date = July 1991 | pmid = 1905726 | doi = 10.1016/S0021-9258(18)98942-8 | doi-access = free }}</ref>
 
=== Υποστρώματα ===