Σημείο: Διαφορά μεταξύ των αναθεωρήσεων

35 bytes προστέθηκαν ,  πριν από 9 έτη
καμία σύνοψη επεξεργασίας
Χωρίς σύνοψη επεξεργασίας
Χωρίς σύνοψη επεξεργασίας
Η πρώτη μαθηματική χρήση της λέξης ''«σημείο»'' γίνεται από τον [[Ευκλείδης|Ευκλείδη]] στα [[Στοιχεία του Ευκλείδη|Στοιχεία]] του, μαζί και με τον ορισμό του, που είναι ο εξής: <span style="letter-spacing:1.1pt;">«''σημεῖόν ἐστιν, οὗ μέρος οὐθέν.''»</span>, δηλαδή σημείο είναι αυτό που δεν αποτελείται απο μέρη. Με αυτή την έννοια παραμένει μέχρι σήμερα στη χρήση της [[Ευκλείδεια Γεωμετρία|Ευκλείδειας Γεωμετρίας]], αλλά και όλων των γνωστών γεωμετριών που έχουν δημιουργηθεί στη σύγχρονη ιστορία, εκτός ελαχίστων εξαιρέσεων στις οποίες καταργούν τελείως την έννοια του σημείου.<ref>Μη-μεταθετική γεωμετρία (Noncommutative geometry) - [http://en.wikipedia.org/wiki/Noncommutative_geometry Αγγλική Wikipedia]</ref>
 
Ο ορισμός του Ευκλείδη στην ουσία εννοεί ότι το σημείο δεν μπορεί να διασπαστεί, να τεμαχιστεί. Αυτή η έννοια υπάρχει και στην έννοια του [[άτομο|άτομου]] του [[Δημόκριτος|Δημόκριτου]]. Όπως αναφέρει ο Διογένης ο Λαέρτιος, μεταφέροντας τις απόψεις του Πλάτωνα, τα πράγματα διακρίνονται σε αυτά που χωρίζονται σε μέρη(''«μεριστά»'') και αυτά που δεν χωρίζονται(''«ἀμέριστα»'').<ref>αρχαίο κείμενο στο {{citation|url=http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.01.0257:book=3:chapter=1&highlight=merista%2F|title=Perseus Project}}</ref> Σε αυτά που δεν χωρίζονται αναφέρει την ''μονάδα''(αριθμητική), το ''σημείο''(γεωμετρία) και τον ''φθόγγο''(μουσική).<ref>ἀμερῆ μὲν οὖν ἐστιν ὅσα μὴ ἔχει διαίρεσιν μηδὲ ἔκ τινος σύγκειται, οἷον ἥ τε <b>μονὰς</b> καὶ ἡ '''στιγμὴ''' καὶ ὁ <b>φθόγγος</b>{{citation|url=http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.01.0257:book=3:chapter=1&highlight=stigmh%2F|title= ( αρχαίο κείμενο στο Perseus Project )}}</ref> Η έννοια του σημείου είχε αποτελέσει στην αρχαιότητα, θέμα πολλών φιλοσοφικών συζητήσεων με σκοπό την κατανόηση και τον ορισμό του, αφού τέτοιες έννοιες αφορούν την φιλοσοφία της γεωμετρίας, αλλά και την φιλοσοφία γενικώς.Οι [[Πυθαγόρειοι φιλόσοφοι|Πυθαγόρειοι]] δίνουν ιδιαίτερη σημασία στην έννοια του ''σημείου'', και αποτελεί μάλιστα ακρογωνιαίο λίθο της γεωμετρίας τους, αλλά και της ευρύτερης κοσμοθεωρίας τους.
 
Στην Καρτεσιανή Γεωμετρία το σημείο ταυτίζεται με τις συντεταγμένες του. Έτσι σε έναν [[Ευκλείδειος χώρος|Ευκλείδειο χώρο]] τριών διαστάσεων το σημείο ορίζεται ως η διατεταγμένη τριάδα (α,β,γ) , όπου τα α,β,γ είναι [[πραγματικοί αριθμοί]]. Γενικότερα για ένα χώρο ''n'' διαστάσεων το σημείο ορίζεται από τις ''n'' συντεταγμένες του.
239

επεξεργασίες