Θεωρία συνόλων: Διαφορά μεταξύ των αναθεωρήσεων

Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
μΧωρίς σύνοψη επεξεργασίας
Χωρίς σύνοψη επεξεργασίας
Γραμμή 23:
* "Naive Set Theory", Paul R. Halmos, Springer-Verlag, 1960 (ελληνική μετάφραση: "Αφελής συνολοθεωρία", μτφ. Γιώργος Κολέτσος, εκδόσεις Εκκρεμές, Αθήνα, 2002, ISBN 960-7651-26-X)
* "Notes on Set Theory", [[Γιάννης Μοσχοβάκης | Yannis N. Moschovakis]], Springer, 2nd edition, 2005 (λληνική έκδοση "Σημειώσεις στη Συνολοθεωρία", εκδόσεις Νεφέλη, 1993)
* "Set Theory", Tomas Jech, Springer, 3rd edition, [[2006]]
 
== '''<u>Βασικές έννοιες και συμβολισμοί</u>''' ==
{{Ενσωμάτωση κειμένου|en|set theory}}
* Κύρια άρθρα:[[σύνολο (μαθηματικά)]] και [[άλγεβρα συνόλων]]
* Η θεωρία συνόλων ξεκινά με μια βασική [[δυαδική σχέση]] μεταξύ ενός αντικειμένου Ο και ενός συνόλου Α. Αν Ο είναι [[μέλος]](ή στοιχείο) του Α τότε γράφουμε ότι Ο∈Α. Δεδομένου ότι τα σύνολα είναι αντικείμενα οι σχέσεις των μελών μπορούν να αφορούν και σύνολα. Μια [[δυαδική σχέση]] που προέρχεται μεταξύ δύο συνόλων είναι επίσης σχέση υποσυνόλων που ονομάζεται σειρά ένταξης. Αν όλα τα μέλη του συνόλου Α είναι μέλη του συνόλου Β, τότε το Α είναι υποσύνολο του Β και συμβολίζεται με Α⊆Β. Για παράδειγμα το σύνολο {1,2} είναι υποσύνολο του {1,2,3}, όπως επίσης και το σύνολο {2} είναι υποσύνολο του {1,2,3} σε αντίθεση με το {1,4} που δεν είναι. Από αυτόν τον ορισμό είναι ξεκάθαρο ότι κάθε σύνολο είναι υποσύνολο του εαυτού του. Για τις περιπτώσεις που κάποιος επιθυμεί να αποκλείσει αυτό το ενδεχόμενο ο όρος κατάλληλο υποσύνολο ορίζεται. Το Α ονομάζεται κατάλληλο υποσύνολο του Β αν και μόνο αν το Α είναι ένα υποσύνολο του Β, αλλά Β δεν είναι ένα υποσύνολο του Α. Σημειώστε επίσης ότι 1 και 2 και 3 είναι μέλη (στοιχεία) του συνόλου {1,2,3} , αλλά δεν είναι υποσύνολα, και τα υποσύνολα με τη σειρά τους δεν είναι ως εκ τούτου μέλη του συνόλου.
 
Ακριβώς όπως η αριθμητική διαθέτει δυαδικές πράξεις σε αριθμούς, η θεωρία συνόλων διαθέτει δυαδικές πράξεις σε σύνολα. Τις εξής:
*[[Ένωση συνόλων]] των συνόλων Α και Β, που συμβολίζεται με Α ∪ Β και είναι το σύνολο όλων των αντικειμένων που είναι μέλος της Α, ή Β, ή και των δύο. Η ένωση του {1, 2, 3} και {2, 3, 4} είναι το σύνολο {1, 2, 3, 4}.
*[[Τομή συνόλων]] και για παράδειγμα των σύνολων Α και Β, που συμβολίζεται Α ∩ Β, είναι το σύνολο όλων των αντικειμένων που είναι μέλη και των δύο Α και Β. Η τομή του {1, 2, 3} και {2, 3, 4} είναι το σύνολο {2 , 3}.
*[[Διαφορά συνόλων]] για παράδειμα ενός συνόλου U και Α , [[συμβολίζεται]] U \ Α, είναι το σύνολο όλων των μελών του U που δεν είναι μέλη της Α Το σύνολο της διαφοράς {1,2,3} \ {2,3,4} είναι {1}, ενώ, αντίθετα, το σύνολο {2,3,4 } \ {1,2,3} είναι {[[4]]}. Όταν το Α είναι ένα υποσύνολο του U, το σύνολο της διαφοράς U \ Α ονομάζεται επίσης το [[συμπλήρωμα]] του Α σε U. Στην περίπτωση αυτή, εάν η επιλογή του U είναι σαφή από τα συμφραζόμενα, ο συμβολισμός Ac χρησιμοποιείται μερικές φορές αντί του U \ A , ιδιαίτερα εάν το U είναι ένα [[οικομενικού συνόλου]], όπως θα διαπιστώσει κανείς αν μελετήσει το [[Διαγραμμα Venn]].
*[[Συμμετρική διαφορά]] των συνόλων Α και Β, που συμβολίζεται Α △ Β ή Α ⊖ Β, είναι το σύνολο όλων των αντικειμένων που είναι ένα μέλος ακριβώς ενός από τα Α και Β (τα στοιχεία που βρίσκονται σε ένα από τα σετ, αλλά όχι και στα δύο). Για παράδειγμα, για τα σύνολα {1,2,3} και {2,3,4}, η συμμετρική σετ διαφορά είναι {1,4}. Είναι το σύνολο διαφοράς της ένωσης και της τομής, (Α ∪ Β) \ (Α ∩ Β) ή (A \ B) ∪ (Β \ Α).
*[[Καρτεσιανό γινόμενο]] των Α και Β, που συμβολίζεται Α × Β, είναι το σύνολο του οποίου τα μέλη είναι όλα τα δυνατά διατεταγμένα ζεύγη (a, b), όπου a είναι ένα μέλος των Α και b είναι μέλος της Β το καρτεσιανό γινόμενο {1, 2} και {κόκκινο, λευκό} είναι {(1, κόκκινο), (1, λευκό), (2, κόκκινο), (2, λευκό)}.
*[[Δυναμοσύνολο]] ενός συνόλου Α είναι το σύνολο του οποίου τα μέλη είναι όλα τα δυνατά υποσύνολα του Α Για παράδειγμα, το δυναμοσύνολο του {1, 2} είναι <nowiki>{{}, {1}, {2}, {1,2}}</nowiki>.
 
Μερικά βασικά σύνολα κεντρικής σημασίας είναι το κενό σύνολο (η μοναδική ομάδα που δεν περιέχει στοιχεία), το σύνολο των φυσικών αριθμών, και το σύνολο των πραγματικών αριθμών.
*{{Ενσωμάτωση κειμένου|en|set theory}}
 
{{Μαθηματικά-υποσέλιδο}}