Διαφορά μεταξύ των αναθεωρήσεων του «Ευκλείδεια γεωμετρία»

περιγραφή δομής χώρου
μ
(περιγραφή δομής χώρου)
 
== Ως περιγραφή της δομής του χώρου ==
Ο Ευκλείδης πίστευε ότι τα [[Αξιώματα της Ευκλείδειας γεωμετρίας|αξιώματά]] του ήταν αυτονόητες καταστάσεις σχετικά με την φυσική πραγματικότητα.Οι αποδείξεις του Ευκλείδη βασίζονταν πάνω σε παραδοχές οι οποίες ίσως να μην ήταν προφανείς στα θεμελιώδη αξιώματα του Ευκλείδη, και πιο συγκεκριμένα ότι ορισμένες αριθμητικές κινήσεις δεν αλλάζουν τις γεωμετρικές τους ιδιότητες όπως τα μήκη των πλευρών και οι εσωτερικές γωνίες, οι λεγόμενες ''Ευκλείδειες κινήσεις'', οι οποίες περιλαμβάνουν μεταφράσεις, αντανακλάσεις και περιστροφές στοιχείων.Λαμβάνοντάς τα ως φυσικές περιγραφές του χώρου, το αξίωμα 2(επέκταση γραμμής) ισχυρίζεται ότι ο χώρος δεν έχει οπές ή όρια(με αλλά λόγια , ο χώρος είναι [[ομοιογενής]] και [[απεριόριστος]]), το αξίωμα 4 (ισότητα ορθών γωνιών) λέει ότι ο χώρος είναι [[ισοτροπικός]] και τα στοιχεία μπορούν να μετακινηθούν σε οποιαδήποτε τοποθεσία όσο διατηρούν μία μαθηματική [[Αναλογία (μαθηματικά)|αναλογία]] , και το αξίωμα 5 ([[παράλληλο αξίωμα]]) ότι ο χώρος είναι επίπεδος(δεν έχει καθόλου [[εγγενή καμπυλότητα]]).
 
Όπως θα δούμε και παρακάτω, η [[Θεωρία της Σχετικότητας]] του [[Άλμπερτ Αϊνστάιν|Αϊνστάιν]] τροποποιεί σημαντικά αυτή την θεωρία.
 
Ο διφορούμενος χαρακτήρας των αξιωμάτων όπως διατυπώθηκαν αρχικά από τον Ευκλείδη δημιούργησε αρκετές διαφωνίες και υπαινιγμούς σχετικά με την δομή του χώρου, όπως αν είναι άπειρος ή όχι και ποια είναι η [[Τοπολογικός χώρος|τοπολογία]] του.
 
=== 19ος αιώνας και μη Ευκλείδεια Γεωμετρία ===
18

επεξεργασίες