Στα μαθηματικά μια δομοστοιχειωτή μορφή (modular form) είναι μια μιγαδική αναλυτική συνάρτηση ορισμένη στο άνω μιγαδικό ημιεπίπεδο η οποία ικανοποιεί κάποιες συγκεκριμένες συνθήκες.[1]

Μια δομοστοιχειωτή συνάρτηση είναι μια δομοστοιχειωτή μορφή, χωρίς τη συνθήκη να είναι ολομορφική συνάρτηση στο άπειρο. Οι δομοστοιχειωτές συναρτήσεις είναι μερομορφικές στο άπειρο.

Η σύνδεση των δομοστοιχειωτών μορφών με τις ελλειπτικές καμπύλες οδήγησε στην απόδειξη σημαντικών εικασιών της θεωρίας αριθμών, ανάμεσά τους και το τελευταίο θεώρημα του Φερμά.

Η θεωρία των δομοστοιχειωτών μορφών είναι κλάδος της μιγαδικής ανάλυσης και βρίσκει κυρίως εφαρμογές στη θεωρία αριθμών. Αποτελεί ειδική περίπτωση της πιο γενικής θεωρίας των αυτομορφικών μορφών.

Η μελέτη τους ξεκινά στις αρχές 19ο αιώνα όπου Γερμανός μαθηματικό Φέλιξ Κλάιν μελέτησε τις ελλειπτικές συναρτήσεις. Ο όρος "δομοστοιχειωτή μορφή" αποδίδεται στον Χέκε.

Διαβάστε επίσηςΕπεξεργασία

  • Μάριος Μαγιολαδίτης, Modular forms of weight 1, Ινστιτούτο Πειραματικών Μαθηματικών, Πανεπιστήμιο του Ντούισμπουργκ-Έσσεν, 2006.

ΠαραπομπέςΕπεξεργασία

  1. Jean-Pierre Serre: A Course in Arithmetic. Graduate Texts in Mathematics 7, Springer-Verlag, New York, 1973.