Διαφορά μεταξύ των αναθεωρήσεων του «Θεωρία αριθμών»

μ
καμία σύνοψη επεξεργασίας
μ
|msc2010= 97F60
}}
 
 
 
'''Θεωρία Αριθμών''' είναι ο κλάδος των Θεωρητικών [[Μαθηματικά|μαθηματικών]], που ασχολείται με τις ιδιότητες των [[Ακέραιος αριθμός|ακεραίων αριθμών]], καθώς και με προβλήματα που προκύπτουν από τη μελέτη αυτή.
Ο γνωστός και διακεκριμένος μαθηματικός Καρλ Φρίντριχ Γκάους, ανέφερε ότι «τα μαθηματικά είναι η βασίλισσα των επιστημών και η θεωρία αριθμών η βασίλισσα των μαθηματικών».
 
== Κριτήρια διαιρετότητας<ref>{{Cite book|title=Μαθηματικά Α΄ Γυμνασίου|last=Βανδουλάκης, Καλλιγάς, Μαρκάκης, Φερεντίνος|first=Ιωάννης|publisher=Παπτάκη|year=2007-2013|isbn=2007–2013|location=ΑΘΗΝΑ|page=28}}</ref> ==
Η μελέτη της στοιχειώδους θεωρίας αριθμών μπορεί να μας δώσει κάποια κριτήρια διαιρετότητας για τους ακεραίους. Για παράδειγμα ένας αριθμός διαιρείται με το 5 αν το τελευταίο του ψηφίο διαιρείται με το 5, δηλ. είναι 0 ή 5. Ένας αριθμός διαιρείται με το 2 (είναι [[Άρτιος αριθμός|άρτιος]]) αν το τελευταίο του ψηφίο διαιρείται με το 2, δηλ. είναι 0, 2, 4, 6, 8. Ένας αριθμός διαιρείται με το 4 αν τα δύο τελευταία του ψηφία διαιρούνται με το 4· με το 8 αν τα τρία τελευταία του ψηφία διαιρούνται με το 8.
 
 
Τα κριτήρια αυτά μας βοηθάνε να κάνουμε υπολογισμούς χρήσιμους στη Θεωρία Αριθμών ταχύτερα.
 
==Παραπομπές==
<references/>
 
{{Μαθηματικά-υποσέλιδο}}
54.410

επεξεργασίες