Μαθηματική αναγωγή
Το λήμμα παραθέτει τις πηγές του αόριστα, χωρίς παραπομπές. |
Η μαθηματική αναγωγή ονομάζεται η μετατροπή μιας έκφρασης σε ταυτόσιμη αλλά απλούστερη μορφή. Χρησιμοποιείται σε όλους σχεδόν τους κλάδους των μαθηματικών. Στα κλάσματα, (μαθηματική) αναγωγή ονομάζεται και «απλοποίηση» και ονομάζεται η επανεγγραφή των όρων του κλάσματος με απλούστερους όρους. Στα ριζικά (μαθηματική) αναγωγή ονομάζεται η επανεγγραφή του περιεχομένου των ριζικών με απλούστερο τρόπο.
Στη Γραμμική Άλγεβρα η (μαθηματική) αναγωγή εφαρμόζει κανόνες για να μετατρέψει την εξίσωση, το σύστημα εξισώσεων ή τους πίνακες (μήτρες) σε ισοδύναμη αλλά απλούστερη μορφή.
Τέλος η (μαθηματική) αναγωγή αναφέρεται και στην τεχνική της ολοκλήρωσης κατά μέλη για τη διευκόλυνση του υπολογισμού τους με την επανεγγραφή τους ως έκφρασης που περιέχει απλούστερα (στον υπολογισμό) ολοκληρώματα.
Στατική Αναγωγή ή Αναγωγή Guyan
ΕπεξεργασίαΣτη δυναμική ανάλυση. η «στατική αναγωγή» ή «αναγωγή Guyan» αναφέρεται στη (μαθηματική) αναγωγή των βαθμών ελευθερίας. Η στατική αναγωγή μπορεί επίσης να εφαρμοστεί για την απλοποίηση ενός προβλήματος γραμμικής άλγεβρας. Π.χ. έστω το ακόλουθο σύστημα γραμμικών εξισώσεων:
- όπου α,β οι γνωστοί και Χ οι άγνωστοι όροι, που τοποθετούνται σε πίνακες.
Η παραπάνω μορφή γράφεται ισοδύναμα και σε μορφή εξίσωσης πινάκων:
Αν τώρα β2=0 και χρειαζόμαστε μόνο τον όρο x1, η εξίσωση των πινάκων μπορεί να αναχθεί στην ακόλουθη εξίσωση:
Η αναγωγή στον όρο α11αν. φαίνεται πώς γίνεται αν ξαναγράψουμε το αρχικό σύστημα εξισώσεων στην ακόλουθη μορφή, εφαρμόζοντας την προϋπόθεση β2=0:
Είναι φανερό τώρα ότι για τη δεύτερη (2η) εξίσωση ισχύει:
Αντικαθιστώντας τώρα το x2 στην πρώτη εξίσωση, αυτή γίνεαι:
Τέλος θέτοντας διαμορφώθηκε η «αναγμένη» εξίσωση:
- Παρόμοια αναγωγή μπορεί να γίνει και αν κάποιο από τα αij είναι 0, ενώ φυσικά μπορεί ομοίως να αναχθεί το α21 αν β1=0.
Αυτό το μαθηματικό λήμμα χρειάζεται επέκταση. Μπορείτε να βοηθήσετε την Βικιπαίδεια επεκτείνοντάς το. |