Πλήρης δακτύλιος διατομής

Στην αντιμεταθετική άλγεβρα, ένας πλήρης δακτύλιος διατομής[1][2] είναι ένας αντιμεταθετικός δακτύλιος παρόμοιος με τους δακτυλίους συντεταγμένων των ποικιλιών που είναι πλήρεις τομές. Ανεπίσημα, μπορούν να θεωρηθούν περίπου ως οι τοπικοί δακτύλιοι που μπορούν να οριστούν χρησιμοποιώντας τον "ελάχιστο δυνατό" αριθμό σχέσεων.

Για τους Ναιτεριανούς τοπικούς δακτυλίους, υπάρχει η ακόλουθη αλυσίδα εγκλεισμάτων:

   Καθολικά Αλυσοειδής δακτύλιοςδακτύλιοι Κοέν-Μακόλεϊδακτύλιοι Γκόρενσταϊνπλήρεις δακτύλιοι διατομήςκανονικοί τοπικοί δακτύλιοι

Ένας τοπικός πλήρης δακτύλιος διατομής είναι ένας Ναιτεριανός τοπικός δακτύλιος του οποίου η ολοκλήρωση είναι το πηλίκο ενός κανονικού τοπικού δακτυλίου προς ένα ιδεώδες που παράγεται από μια κανονική ακολουθία. Η συνεκτίμηση της ολοκλήρωσης αποτελεί μια μικρή τεχνική επιπλοκή λόγω του γεγονότος ότι δεν είναι όλοι οι τοπικοί δακτύλιοι πηλίκα κανονικών δακτυλίων. Για τους δακτυλίους που είναι πηλίκα κανονικών τοπικών δακτυλίων, οι οποίοι καλύπτουν τους περισσότερους από τους τοπικούς δακτυλίους που εμφανίζονται στην αλγεβρική γεωμετρία, δεν είναι απαραίτητο να ληφθούν υπόψιν οι συμπληρώσεις στον ορισμό.[3]

Υπάρχει ένας εναλλακτικός εσωτερικός ορισμός που δεν εξαρτάται από την ενσωμάτωση του δακτυλίου σε έναν κανονικό τοπικό δακτύλιο. Αν ο R είναι ένας Ναιτεριανός τοπικός δακτύλιος με μέγιστο ιδεώδες m, τότε η διάσταση του m/m2 ονομάζεται διάσταση ενσωμάτωσης dim (R) του R. Ορίζουμε μια βαθμωτή άλγεβρα H(R) ως την ομολογία του μιγαδικού Κοσζούλ ως προς ένα ελάχιστο σύστημα γεννητόρων του m/m2;- μέχρι ισομορφισμού αυτό εξαρτάται μόνο από τον R και όχι από την επιλογή των γεννητόρων του m. Η διάσταση τηςH1(R) συμβολίζεται με ε1 και ονομάζεται πρώτη απόκλιση του R- εξαφανίζεται αν και μόνο αν ο R είναι κανονικός. Ένας τοπικός δακτύλιος Ναιτεριανός ονομάζεται πλήρης δακτύλιος διατομής αν η διάσταση της ενσωμάτωσής του είναι το άθροισμα της διάστασης και της πρώτης απόκλισης:

emb dim(R) = dim(R) + ε1(R).

Υπάρχει επίσης ένας αναδρομικός χαρακτηρισμός των τοπικών δακτυλίων πλήρους διατομής που μπορεί να χρησιμοποιηθεί ως ορισμός, ως εξής. Ας υποθέσουμε ότι ο R είναι ένας πλήρης Ναιτεριανός τοπικός δακτύλιος. Αν ο R έχει διάσταση μεγαλύτερη του 0 και το x είναι ένα στοιχείο στο μέγιστο ιδεώδες που δεν είναι μηδενικός διαιρέτης τότε ο R είναι ένας πλήρης δακτύλιος τομής αν και μόνο αν ο R/(x) είναι. (Αν το μέγιστο ιδεώδες αποτελείται εξ ολοκλήρου από μηδενικούς διαιρέτες τότε το R δεν είναι πλήρης δακτύλιος τομής). Αν ο R έχει διάσταση 0, Wiebe (1969) τότε έδειξε ότι είναι πλήρης δακτύλιος διατομής αν και μόνο αν το ιδεώδες προσαρμογής του μέγιστου ιδεώδους του είναι μη μηδενικό..

Παραδείγματα

Επεξεργασία

Κανονικοί τοπικοί δακτύλιοι

Επεξεργασία

Οι κανονικοί τοπικοί δακτύλιοι είναι πλήρεις δακτύλιοι διατομής, αλλά το αντίστροφο δεν ισχύει: ο δακτύλιος   είναι ένας 0-διάστατος πλήρης δακτύλιος τομής που δεν είναι κανονικός.[4]

Δεν είναι πλήρης διατομή

Επεξεργασία

Το παράδειγμα ενός τοπικά πλήρους δακτυλίου διατομής που δεν είναι πλήρης δακτύλιος διατομής δίνεται από τον   ο οποίος έχει μήκος 3 αφού είναι ισομορφικός ως διανυσματικός χώρος   με τον  .[5]

Αντιπαράδειγμα

Επεξεργασία

Οι τοπικοί δακτύλιοι πλήρους διατομής είναι δακτύλιοι Γκόρενσταϊν, αλλά το αντίστροφο δεν ισχύει: ο δακτύλιος   είναι ένας 0-διάστατος δακτύλιος Γκόρενσταϊν που δεν είναι δακτύλιος πλήρους διατομής. Ως διανυσματικός χώρος   αυτός ο δακτύλιος είναι ισομορφικός με τον

 , where  , and  

δείχνοντας ότι είναι Γκορένσταϊν, αφού η συνιστώσα του ανώτατου βαθμού έχει διάσταση   και ικανοποιεί την ιδιότητα Πουανκαρέ. Δεν είναι ένας τοπικός πλήρης δακτύλιος διατομής επειδή το ιδεώδες   δεν είναι  -κανονικό. Παραδείγματος χάριν, το   είναι μηδενικός διαιρέτης του   στο  

Δημοσιεύσεις

Επεξεργασία
  • Bruns, Winfried; Herzog, Jürgen (1993), Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, ISBN 978-0-521-41068-7, https://books.google.com/books?id=LF6CbQk9uScC 
  • Majadas, Javier· Rodicio, Antonio G. (2010). Smoothness, Regularity and Complete Intersection. Cambridge University Press. ISBN 9781139107181. 
  • Tate, John (1957), «Homology of Noetherian rings and local rings», Illinois Journal of Mathematics 1: 14–27, ISSN 0019-2082, http://projecteuclid.org/euclid.ijm/1255378502 
  • Wiebe, Hartmut (1969), «Über homologische Invarianten lokaler Ringe», Mathematische Annalen 179: 257–274, doi:10.1007/BF01350771, ISSN 0025-5831 

Δείτε επίσης

Επεξεργασία

Εξωτερικοί σύνδεσμοι

Επεξεργασία

Παραπομπές

Επεξεργασία

Σημειώσεις

Επεξεργασία