Η ομάδα συμμετρίας[1] ενός αντικειμένου (εικόνας, σήματος, κ.τ.λ.), στην αφηρημένη άλγεβρα, είναι η ομάδα των μετασχηματισμός για τους οποίους το αντικείμενο είναι αμετάβλητο με πράξη τη σύνθεση. Είναι μια υποομάδα της ομάδας ισομετρίας του χώρου αναφοράς. Όπως διατυπώθηκε ως τώρα, η αναφερόμενη έννοια αφορά στην Ευκλείδεια γεωμετρία, αλλά στην πραγματικότητα η έννοια μπορεί επίσης να μελετηθεί σε ευρύτερα πλαίσια.

Ένα τετράεδρο μπορςί να τοποθετηθεί σε 12 διακριτές θἐσεις με την περιστροφή του μόνο. Αυτές απεικονίζονται στην παραπάνω μορφή κυκλικού γραφήματος, μαζί με την περιστροφή των 180° (άκρο, μπλε βέλη) και αυτό των 120° (κορυφή, κόκκινα βέλη) που μετατίθεται το τετράεδρο διαμέσου των διακριτών θέσεων. Οι 12 περιστροφές σχηματίζουν τη «συμμετρία ομάδας περιστροφής» που εικονίζεται.

Προλεγόμενα

Επεξεργασία

Τα «αντικεἰμενα» μπορεί να είναι γεωμετρικά σχήματα, εικόνες και μοτίβα, όπως τα μοτίβα σε ταπετσαρίες. Ο ορισμός μπορεί να γίνει περισσότερο πρακτικός αν εξειδικεύσουμε τι ακριβώς εννοούμε με τους όρους «εικόνα» ή «μοτίβο», λόγου χάρη. Είναι μια συνάρτηση με σύνολο ορισμού θέσεις και πεδίο τιμών ένα σύνολο από χρώματα. Για τη συμμετρία των φυσικών αντικειμένων, μπορεί να χρειάζεται να ληφθεί υπόψη και η φυσική σύνθεση του αντικειμένου στους υπολογισμούς. Η ομάδα ισομμετρίας του χώρου επάγει μια ομάδα δράσεων σε αντικείμενα μέσα στο χώρο αυτό.

Παραπομπές

Επεξεργασία
  1. Sagan, Bruce E. (9 Μαρτίου 2013). The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Springer Science & Business Media. ISBN 978-1-4757-6804-6. 

Βιβλιογραφία

Επεξεργασία

Εξωτερικοί σύνδεσμοι

Επεξεργασία
  •   Πολυμέσα σχετικά με το θέμα Symmetry στο Wikimedia Commons