Ρητή συνάρτηση
Το λήμμα παραθέτει τις πηγές του αόριστα, χωρίς παραπομπές. |
Η ρητή συνάρτηση[1] είναι μία κλασματική συνάρτηση με πολυωνυμικούς όρους. Ανήκει στις αλγεβρικές συναρτήσεις. Περιγράφεται από τον γενικό τύπο:
Μαθηματικές Συναρτήσεις | |||||||||
---|---|---|---|---|---|---|---|---|---|
Συναρτήσεις μίας μεταβλητής | |||||||||
Συναρτήσεις πολλών μεταβλητών | |||||||||
| |||||||||
| |||||||||
|
- ή
Η ρητή συνάρτηση ορίζεται για κάθε πραγματικό αριθμό, εκτός από τους αριθμούς που μηδενίζουν το πολυώνυμο του παρονομαστή.
Παραγώγιση ρητής συνάρτησης
ΕπεξεργασίαΕφόσον οι συναρτήσεις f(x) και g(x) είναι παραγωγίσιμες ως πολυωνυμικές προκύπτει ότι και η συνάρτηση f(x)/g(x) είναι παραγωγίσιμη και η παράγωγός της ισούται με:
Ολοκλήρωση ρητής συνάρτησης
ΕπεξεργασίαΗ ολοκλήρωση ρητής συνάρτησης δίνει ως αποτέλεσμα συνήθως κάποια υπερβατική συνάρτηση. Υπάρχουν πολλές μέθοδοι ολοκλήρωσης ρητής συνάρτησης ανάλογα με την περίπτωση. Στις περισσότερες περιπτώσεις η συνάρτηση γράφεται ως άθροισμα απλούστερων κλασμάτων της μορφής:
- ή
Τα οποία έχουν γνωστά ολοκληρώματα:
Πηγές
Επεξεργασία- Διαφορικός και ολοκληρωτικός λογισμός, Σύγχρονη εκδοτική, τόμος Β΄
- Μαθηματικά θετικής & τεχνολογικής κατεύθυνσης Γ΄λυκείου - ΟΕΔΒ
Παραπομπές
Επεξεργασία- ↑ «Rational function - Encyclopedia of Mathematics». encyclopediaofmath.org. Ανακτήθηκε στις 29 Απριλίου 2024.
Αυτό το μαθηματικό λήμμα χρειάζεται επέκταση. Μπορείτε να βοηθήσετε την Βικιπαίδεια επεκτείνοντάς το. |