Άνοιγμα κυρίου μενού

Μία συνάρτηση f(x) με πεδίο ορισμού το Af λέγεται περιττή, αν για κάθε x που ανήκει στο Af ισχύει ότι το -x ανήκει στο Af και ότι f(-x)=-f(x).

Μαθηματικές Συναρτήσεις
Συναρτήσεις μίας μεταβλητής
Συναρτήσεις πολλών μεταβλητών

Χαρακτηριστικά της περιττής συνάρτησηςΕπεξεργασία

Λόγω της ιδιότητάς της για τη μελέτη της περιττής συνάρτησης αρκεί να μελετηθεί για τιμές του ενός προσήμου, για παράδειγμα για x μεγαλύτερο ή ίσο του μηδενός. Τα αποτελέσματα μπορούν να γενικευούν κατάλληλα και για τις υπόλοιπες τιμές έχοντας μια πλήρη εικόνα της συνάρτησης.

Πεδίο ορισμούΕπεξεργασία

Το πεδίο ορισμού της περιττής συνάρτησης είναι συμμετρικό ως προς το μηδέν. Για παράδειγμα, αν το διάστημα [2,6) ανήκει στο πεδίο ορισμού, τότε ανήκει και το διάστημα (-6,-2].

Συνέχεια-ΠαραγωγισιμότηταΕπεξεργασία

Η περιττή συνάρτηση δεν είναι κατά ανάγκη συνεχής ή παραγωγίσιμη. Αυτό που συμβαίνει είναι ότι αν η συνάρτηση έχει την ιδιότητα της συνέχειας ή της παραγωγισιμότητας σε ένα σημείο ή διάστημα έχει και την ίδια ιδιότητα στο συμμετρικό ως προς τον άξονα y'y σημείο ή διάστημα. Επιπλέον, η παράγωγος, αν υπάρχει είναι άρτια συνάρτηση.

ΜονοτονίαΕπεξεργασία

Η μονοτονία της συνάρτησης, όπου υπάρχει, είναι ίδια σε συμμετρικά ως προς το μηδέν πεδία. Για παράδειγμα, αν μια περιττή συνάρτηση είναι γνησίως αύξουσα στο (-2,-1], τότε η ίδια συνάρτηση είναι γνησίως αύξουσα το [1,2).

ΑσύμπτωτεςΕπεξεργασία

Οι ασύμπτωτες, αν υπάρχουν, είναι συμμετρικές ως προς την αρχή των αξόνων Ο, άρα και παράλληλες μεταξύ τους.

Σύνολο τιμών-ΡίζεςΕπεξεργασία

Το σύνολο τιμών περιττής συνάρτησης ταυτίζεται με την ένωση του πεδίου των θετικών (συμπεριλαμβανομένου και του μηδενός, αν ανήκει στο πεδίο ορισμού) και του πεδίου των αρνητικών αριθμών (συμπεριλαμβανομένου και του μηδενός, αν ανήκει στο πεδίο ορισμού). Τα δύο επιμέρους σύνολα τιμών είναι συμμετρικά μεταξύ τους ως προς το μηδέν. Σε κάθε περιττή συνάρτηση, αν στο πεδίο ορισμού συμπεριλαμβάνεται και το μηδέν ισχύει ότι f(0)=0. Το σύνολο των ριζών περιττής συνάρτησης είναι περιττό.

ΚοιλοκυρτότηταΕπεξεργασία

Η κοιλοκυρτότητα της συνάρτησης, όπου ορίζεται, είναι του αντίθετου είδους σε συμμετρικά ως προς το μηδέν πεδία. Η δεύτερη παράγωγος της συνάρτησης, αν ορίζεται, είναι και αυτή περιττή.

Το άρθρο βασίστηκε στη διαδικασία της μαθηματικής ανάλυσης συνάρτησης που αναγράφεται στο βιβλίο Μαθηματικά θετικής και τεχνολογικής κατεύθυνσης, ISBN 960-06-0703-6 ΟΕΔΒ εκδόσεις 2008, παράγραφος 2.10, σελίδα 287