Νετρόνιο

υποατομικό σωματίδιο

Στη φυσική, το νετρόνιο είναι ένα υποατομικό σωματίδιο χωρίς ηλεκτρικό φορτίο (ουδετερόνιο) που μαζί με το πρωτόνιο συνιστούν τους πυρήνες των ατόμων. Ανακαλύφθηκε το 1935 από τον Τζέιμς Τσάντγουικ που έκανε πειράματα πάνω σε αποτελέσματα του Βάλτερ Μπότε. Έχει μάζα 939.565 MeV/c2 (1,6749x10−27 kg, λίγο μεγαλύτερη από αυτή του πρωτονίου (το οποίο έχει μάζα ίση με περίπου 1,673x10−27 kg). Το σπιν του είναι ίσο με ½ και για το λόγο αυτό κατατάσσεται στα φερμιόνια, δηλαδή στα σωματίδια της ύλης. Το αντισωματίδιο του ονομάζεται αντινετρόνιο. Το νετρόνιο και το πρωτόνιο είναι δύο διαφορετικές εκφάνσεις ενός νουκλεονίου.

Νετρόνιο
Τα κουάρκ στη δομή του νετρονίου. Το χρώμα κάθε κουάρκ είναι αυθαίρετο, αλλά πρέπει να είναι παρόντα και τα τρία χρώματα. Οι δυνάμεις μεταξύ των κουάρκ μεσολαβούνται από γκλουόνια.
ΤαξινόμησηΒαρυόνιο
Σύνθεση1 Up κουάρκ, 2 Down κουάρκ
ΣτατιστικήΦερμιονική
ΑλληλεπιδράσειςΒαρυτική, ασθενής πυρηνική, ισχυρή πυρηνική, ηλεκτρομαγνητική
Σύμβολοn, n0, N0
ΑντισωματίδιοΑντινετρόνιο (n)
Προβλέφθηκε θεωρητικάΈρνεστ Ράδερφορντ[1][2] (1920)
ΑνακαλύφθηκεΤζέιμς Τσάντγουικ[1] (1932)
Αναλλοίωτη μάζα1.674927351(74) × 10-27 kg[3]
939.565378(21) MeV/c2[3]
1.00866491600(43) u[3]
Μέσος χρόνος ζωής881.5(15) s (ελεύθερο)
Ηλεκτρικό φορτίο0
Ηλεκτρική διπολική ροπή2.9 × 10-26 e·cm
Ηλεκτρική πολωσιμότητα1.16(15) × 10-3 fm3
Μαγνητική ροπή-0.96623647(23) × 10-26 J·T−1[3]
Μαγνητική πολωσιμότητα3.7(20) × 10-4 fm3
Φορτίο χρώματοςΛευκό (άχρωμο)
Σπιν½
Ισοσπίν½

Ο πυρήνας των περισσότερων ατόμων (όλων εκτός του πρώτιου, του πιο κοινού ισοτόπου του υδρογόνου, το οποίο αποτελείται από ένα μόνο πρωτόνιο) αποτελείται από πρωτόνια και νετρόνια. Στα πρώτα 20 χημικά στοιχεία του Περιοδικού Πίνακα ο αριθμός των νετρονίων είναι ίσος (ή σχεδόν ίσος) με τον αριθμό των πρωτονίων. Όσο όμως αυξάνεται ο ατομικός αριθμός Ζ ενός στοιχείου, τόσο περισσότερα γίνονται τα νετρόνια μέσα στον πυρήνα (στους ραδιενεργούς πυρήνες ο αριθμός των νετρονίων είναι πολύ μεγαλύτερος από αυτόν των πρωτονίων - π.χ. σε έναν πυρήνα ουρανίου U-235 υπάρχουν 92 πρωτόνια και 143 νετρόνια). Ισχύει πάντοτε στην πυρηνική φυσική ότι ο αριθμός των νετρονίων είναι μεγαλύτερος ή ίσος του αριθμού των πρωτονίων (με μοναδική εξαίρεση το πρώτιο).

Ιδιότητες

Επεξεργασία

Τα νετρόνια ως ηλεκτρικώς ουδέτερα σωματίδια, δεν ιονίζουν την ύλη όταν διέρχονται μέσα από αυτήν και η πορεία τους δεν εκτρέπεται από ηλεκτρικά ή μαγνητικά πεδία. Συνεπώς, ένα νετρόνιο αν βρεθεί κοντά σε έναν ατομικό πυρήνα δεν πρόκειται να δεχθεί κάποια επίδραση(θετική ή αρνητική), παρά μόνο αν βρεθεί πολύ κοντά σε αυτόν (όπου και τότε θα επηρεαστεί από την ισχυρή πυρηνική δύναμη), εν αντιθέσει με το πρωτόνιο (που θα αλληλεπιδράσει έτσι και αλλιώς ηλεκτρομαγνητικά με τον πυρήνα). Όταν βρίσκονται έξω από τον πυρήνα του ατόμου, είναι ασταθή και έχουν μέσο χρόνο ζωής 885.8 ± 3.4 s (δευτερόλεπτα) (περίπου 15 λεπτά) και μετά διασπώνται προς ένα πρωτόνιο, ένα ηλεκτρόνιο και ένα αντινετρίνο του ηλεκτρονίου. Τα νετρόνια σε αυτή την ασταθή κατάσταση ονομάζονται ελεύθερα νετρόνια. Η ίδια διαδικασία διάσπασης (διάσπαση βήτα ή εκπομπή ακτινοβολίας βήτα) χαρακτηρίζει και μερικούς ραδιενεργούς πυρήνες. Το νετρόνιο κατηγοριοποιείται ως βαρυόνιο καθώς αποτελείται από 3 κουάρκ, δύο κάτω (down) κουάρκ και ένα πάνω (up) quark (udd). Η αντιύλη του νετρονίου ισοδυναμεί με το αντινετρόνιο.

Ο αριθμός των νετρονίων καθορίζει το ισότοπο ενός στοιχείου. (Για παράδειγμα, το ισότοπο του άνθρακα-12, έχει 6 πρωτόνια και 6 νετρόνια, ενώ το ισότοπο του άνθρακα-14 έχει 6 πρωτόνια και 8 νετρόνια). Τα ισότοπα είναι άτομα του ίδιου στοιχείου τα οποία έχουν δηλαδή τον ίδιο ατομικό αριθμό (αριθμός των πρωτονίων και ηλεκτρονίων), αλλά διαφέρουν μεταξύ τους ως προς τον μαζικό αριθμό (αριθμός νουκλεονίων) λόγω του διαφορετικού αριθμού νετρονίων.

Αλληλεπιδράσεις

Επεξεργασία

Το νετρόνιο μπορεί να συμμετάσχει και στις τέσσερις θεμελιώδεις αλληλεπιδράσεις: την ηλεκτρομαγνητική αλληλεπίδραση, την ασθενή πυρηνική, την ισχυρή πυρηνική και τη βαρυτική.

Παρόλο που το νετρόνιο έχει μηδενικό ηλεκτρικό φορτίο, μπορεί να αλληλεπιδράσει ηλεκτρομαγνητικά με δύο τρόπους:

  1. το νετρόνιο έχει μαγνητική ροπή της ίδιας τάξης μεγέθους με το πρωτόνιο και
  2. συνίσταται από ηλεκτρικά φορτισμένα κουάρκ.

Το νετρόνιο συμμετέχει σε ασθενείς πυρηνικές αλληλεπιδράσεις όπου μετατρέπεται σε πρωτόνιο και ταυτόχρονα παράγεται ένα ηλεκτρόνιο και ένα αντινετρίνο του ηλεκτρονίου. Αυτό γίνεται στη διάσπαση βήτα και συμβαίνει για να "αποφορτιστεί" κάποιος ατομικός πυρήνας από την παρουσία πολλών πρωτονίων των οποίων η αμοιβαία απώθηση λόγω ομώνυμου ηλεκτρικού φορτίου καθιστά τον πυρήνα ασταθή.

Επίσης, το νετρόνιο συμμετέχει στη βαρυτική αλληλεπίδραση όπως και κάθε σώμα με μάζα. Ωστόσο, η βαρύτητα είναι τόσο ασθενής και θεωρείται αμελητέα στα περισσότερα πειράματα σωματιδιακής φυσικής.

Η σημαντικότερη αλληλεπίδραση για τα νετρόνια είναι η ισχυρή πυρηνική. Με αυτήν την αλληλεπίδραση συγκρατούνται τα τρία κουάρκ στο νετρόνιο, αλλά και τα νετρόνια και τα πρωτόνια στον πυρήνα.

Ανίχνευση

Επεξεργασία

Ο κοινός τρόπος ανίχνευσης ενός ηλεκτρικά φορτισμένου στοιχειώδους σωματιδίου, με την παρατήρηση του ίχνους ιονισμού δε μπορεί να εφαρμοστεί στα νετρόνια άμεσα, εξαιτίας της απουσίας ηλεκτρικού φορτίου στο νετρόνιο. Τα νετρόνια, τα οποία σκεδάζονται ελαστικά στα άτομα μπορούν να δημιουργήσουν ίχνος ιονισμού το οποίο είναι ανιχνεύσιμο, όμως τα πειράματα δεν είναι απλά στη διεξαγωγή τους. Άλλοι τρόποι, πιο συνήθεις, για την ανίχνευση των νετρονίων στηρίζονται στο να τους επιτραπεί να αλληλεπιδράσουν με άλλους ατομικούς πυρήνες.

Μία συνήθης μέθοδος για την ανίχνευση των νετρονίων στηρίζεται στη μετατροπή της ενέργειας η οποία απελευθερώνεται από τέτοιου είδους αλληλεπιδράσεις σε ηλεκτρικά σήματα. Πυρήνες 3He, 6Li, 10B, 233U, 235U, 237Np και 239Pu είναι χρήσιμοι για αυτό τον σκοπό.

Ο ρόλος του στα ισότοπα

Επεξεργασία

Ο αριθμός των νετρονίων καθορίζει το ισότοπο ενός στοιχείου. (Για παράδειγμα, το ισότοπο του άνθρακα-12, έχει 6 πρωτόνια και 6 νετρόνια, ενώ το ισότοπο του άνθρακα-14 έχει 6 πρωτόνια και 8 νετρόνια). Τα ισότοπα είναι άτομα του ίδιου στοιχείου τα οποία έχουν δηλαδή τον ίδιο ατομικό αριθμό, αλλά διαφέρουν μεταξύ τους ως προς τον μαζικό αριθμό λόγω του διαφορετικού αριθμού νετρονίων.

Το νετρόνιο παίζει σημαντικό ρόλο σε πολλές πυρηνικές αντιδράσεις. Για παράδειγμα, η σύλληψη ενός νετρονίου από κάποιον πυρήνα ατόμου, έχει ως αποτέλεσμα την αύξηση του μαζικού αριθμού του ατόμου του πυρήνα και συχνά οδηγεί στη δημιουργία κάποιου ραδιενεργού ισοτόπου. Το φαινόμενο αυτό ονομάζεται νετρονική ενεργοποίηση (neutron activation). Εξάλλου, η γνώση της ύπαρξης των νετρονίων και των ιδιοτήτων τους, υπήρξε σημαντική για την κατανόηση των πυρηνικών αντιδράσεων και την ανάπτυξη των πυρηνικών όπλων και των πυρηνικών αντιδραστήρων.

Μία χρήση των εκπομπών νετρονίων είναι η ανίχνευση ελαφρών πυρήνων, ειδικότερα του υδρογόνου το οποίο βρίσκεται στα μόρια του νερού. Όταν ένα ταχύ νετρόνιο συγκρουστεί με έναν ελαφρύ πυρήνα, χάνει ένα μεγάλο μέρος της ενέργειάς του. Μετρώντας τον ρυθμό (με τη βοήθεια κατάλληλου ανιχνευτή) με τον οποίο τα νετρόνια (χαμηλής πια ταχύτητας) επιστρέφουν στον εκπομπό ύστερα από την ανάκλαση τους στους πυρήνες υδρογόνου, μπορεί να γίνει η ανίχνευση νερού στο έδαφος.

Παραγωγή

Επεξεργασία

Λόγω του γεγονότος ότι τα ελεύθερα νετρόνια είναι ασταθή, μπορούν να παραχθούν μόνο ύστερα από διασπάσεις πυρήνων, πυρηνικές αντιδράσεις, και αντιδράσεις υψηλής ενέργειας (όπως στην περίπτωση της σύγκρουσης πυρήνων σε επιταχυντή).

Η έλλειψη ολικού ηλεκτρικού φορτίου αποτρέπει μηχανικούς και πειραματικούς επιστήμονες από το να τα επιταχύνουν. Φορτισμένα σωματίδια μπορούν να επιταχυνθούν, επιβραδυνθούν ή να ανακλαστούν από ηλεκτρικά ή μαγνητικά πεδία. Ωστόσο, αυτές οι μέθοδοι δεν έχουν σχεδόν καμία επίδραση στα νετρόνια (ωστόσο υπάρχει μία μικρή επίδραση του μαγνητικού πεδίου πάνω σε ελεύθερα νετρόνια λόγω της μαγνητικής τους ροπής).

Ανακάλυψη

Επεξεργασία

Το 1930 οι Walther Bothe και H. Becker στη Γερμανία, βρήκαν πως αν τα υψηλής ενέργειας σωματίδια άλφα εκπεμπόμενα από το πολώνιο προσέκρουαν σε συγκεκριμένα ελαφρά στοιχεία (αναφορικά τα Βηρύλλιο, βόριο, λίθιο), μία ασυνήθιστα διεισδυτική ακτινοβολία παραγόταν. Αρχικά η ακτινοβολία αυτή πιστευόταν πως ήταν ακτινοβολία γάμμα, παρόλο που ήταν περισσότερο διεισδυτική από κάθε γνωστή ακτινοβολία γάμμα και τα αποτελέσματα του πειράματος ήταν πολύ δύσκολο να ερμηνευτούν βάση αυτής της υπόθεσης. Η επόμενη μεγαλύτερη συνεισφορά αναφέρθηκε το 1932 από τους Irène Joliot-Curie και Frédéric Joliot στο Παρίσι. Έδειξαν πως όταν αυτή η άγνωστη ακτινοβολία προσέπιπτε σε παραφίνη ή κάθε άλλη ουσία η οποία περιείχε υδρογόνο παράγονταν ηλεκτρόνια υψηλής ενέργειας. Αυτό δεν ήταν ασύμβατο με την υποθετική φύση ακτινοβολίας γάμμα αλλά η ποσοτική ανάλυση των δεδομένων ήταν δύσκολο να προσαρμοστεί σε αυτή την υπόθεση. Τελικά, αργότερα, το 1932, ο φυσικός Τζέιμς Τσάτουικ στην Αγγλία πραγματοποίησε μια σειρά από πειράματα αποδεικνύονταν πως η υπόθεση της ακτινοβολίας γάμμα ήταν αβάσιμη. Πρότεινε ότι η νέα αυτή ακτινοβολία αποτελούνταν από αφόρτιστα σωματίδια με μάζα παραπλήσια του πρωτονίου, και πραγματοποίησε μια νέα σειρά από πειράματα που αποδείκνυαν την υπόθεση του. Αυτά τα αφόρτιστα σωματίδια τα ονόμασε τελικά νετρόνια.

Αντινετρόνιο

Επεξεργασία

Το αντινετρόνιο είναι το αντισωματίδιο (ένα από τα σωματίδια της αντιύλης) του νετρονίου. Ανακαλύφθηκε από τον Bruce Cork το 1956, έναν χρόνο μετά την ανακάλυψη του αντιπρωτονίου. Η CPT-θεωρία επιβάλλει αυστηρούς περιορισμούς στις σχετικές ιδιότητες μεταξύ των σωματιδίων και των αντισωματιδίων τους, προβλέποντας διαφορά μάζας μεταξύ νετρονίου και αντινετρονίου ίση με 6×10−12eV/c.

Παραπομπές

Επεξεργασία
  1. 1,0 1,1 1935 Nobel Prize in Physics. Nobelprize.org. Retrieved on 2012-08-16.
  2. Ernest Rutherford. Chemed.chem.purdue.edu. Retrieved on 2012-08-16.
  3. 3,0 3,1 3,2 3,3 Mohr, P.J.; Taylor, B.N. and Newell, D.B. (2011), "The 2010 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 6.0). The database was developed by J. Baker, M. Douma, and S. Kotochigova. (2011-06-02). National Institute of Standards and Technology, Gaithersburg, Maryland 20899.

Βιβλιογραφία

Επεξεργασία
  • James Byrne, Neutrons, Nuclei and Matter: An Exploration of the Physics of Slow Neutrons. Mineola, New York: Dover Publications, 2011. (ISBN 0486482383).
  • Abraham Pais, Inward Bound, Oxford: Oxford University Press, 1986. (ISBN 0198519974).
  • Sin-Itiro Tomonaga, The Story of Spin, The University of Chicago Press, 1997.
  • Herwig Schopper, Weak interactions and nuclear beta decay, Publisher, North-Holland Pub. Co., 1966.

Εξωτερικοί σύνδεσμοι

Επεξεργασία