Στην γεωμετρία, ο νόμος των ημιτόνων, είναι μία σχέση που ισχύει σε οποιοδήποτε τρίγωνο και η οποία συνδέει τα μήκη των πλευρών ενός τριγώνου με τα ημίτονα των γωνιών του. Πιο συγκεκριμένα σε κάθε τρίγωνο , ισχύει ότι[1]:244-245
Τρίγωνο στο οποίο αναγράφονται τα μήκη των πλευρών του , , , οι γωνίες του , , και ο περιγεγραμμένος κύκλος του ακτίνας .
όπου , , είναι τα μήκη των πλευρών του, , , οι γωνίες του, και η ακτίνα του περιγεγραμμένου κύκλου του τριγώνου.
Δηλαδή σε ένα τυχόν τρίγωνο ο λόγος της πλευράς προς το ημίτονο της γωνίας που βλέπει προς την πλευρά είναι σταθερός και ίσος με την διάμετρο του περιγεγραμμένου κύκλου, δηλαδή με .
χρησιμοποιώντας διαφορετικές εκφράσεις για τα ύψη του . Έστω το ύψος που αντιστοιχεί στην κορυφή . Τότε στο ορθογώνιο τρίγωνο, από τον ορισμό του ημιτόνου , έχουμε ότι
Αρκεί να δείξουμε ότι . Θεωρούμε την κάθετη από το στην και το σημείο που τέμνεται με τον περιεγραμμένο κύκλο του . Χρησιμοποιώντας την ισότητα των λόγων του νόμου των ημιτόνων (που αποδείξαμε παραπάνω) στο τρίγωνο , έχουμε ότι
.
Αφού η βαίνει στο ίδιο τόξο με την έχουμε ότι . Επίσης αφού , ισχύει ότι . Συνεπώς,