Εξάγωνο

πολύγωνο με έξι πλευρές

Στη γεωμετρία, το εξάγωνο (από τις ελληνικές λέξεις ἕξ = έξι και γωνία) είναι ένα πολύγωνο σχήμα με έξι πλευρές και έξι κορυφές. Οι εσωτερικές γωνίες οποιουδήποτε εξαγώνου έχουν άθροισμα 720 μοίρες (°).

Κανονικό εξάγωνο

Επεξεργασία
 
Η κατασκευή βήμα-βήμα ενός κανονικού εξαγώνου με κανόνα και διαβήτη, όπως περιγράφεται από τον Ευκλείδη στα Στοιχεία (βιβλίο 4, πρόταση 15).

Το κανονικό εξάγωνο έχει όλες τις πλευρές του ίσες, και όλες τις εσωτερικές γωνίες του ίσες με 120°. Το κανονικό εξάγωνο έχει 6 περιστροφικές συμμετρίες («περιστροφική συμμετρία τάξεως 6») και 6 κατοπτρικές συμμετρίες (ή έξι γραμμές συμμετρίας), ορίζοντας τη δίεδρη ομάδα D6. Οι μακρύτερες διαγώνιοι ενός κανονικού εξαγώνου, που ενώνουν διαμετρικά αντίθετες κορυφές, έχουν μήκος διπλάσιο από αυτό της κάθε πλευράς του. Από το δεδομένο αυτό έπεται ότι ένα τρίγωνο με τη μία κορυφή του στο κέντρο κανονικού εξαγώνου και τη μία πλευρά του κοινή με μία πλευρά του εξαγώνου είναι ισόπλευρο τρίγωνο, και ότι το κανονικό εξάγωνο μπορεί να διαμερισθεί σε 6 ισόπλευρα τρίγωνα.

Καθώς συμβαίνει και με τα τετράγωνα και τα ισόπλευρα τρίγωνα, τα κανονικά εξάγωνα συναρμόζονται απολύτως, χωρίς κενά μεταξύ τους, ώστε να «πλακοστρώνουν» το επίπεδο (τρία εξάγωνα συναντώνται σε κάθε κορυφή), και έτσι το σχήμα αυτό μπορεί να χρησιμοποιηθεί σε πλακάκια. Για τον ίδιο λόγο, οι μέλισσες κατασκευάζουν τα κελιά στις κερήθρες τους σε σχήμα κανονικών εξαγωνικών πρισμάτων — με το συγκεκριμένο σχήμα χρησιμοποιείται αποδοτικότερα ο διαθέσιμος χώρος και τα υλικά κατασκευής.

Το εμβαδό ενός κανονικού εξαγώνου με μήκος πλευράς α είναι:

 

Μία άλλη σχέση για το εμβαδό είναι Ε = 1,5αd όπου το μήκος d είναι η απόσταση μεταξύ των παράλληλων πλευρών του (το «ύψος» του εξαγώνου) ή η διάμετρος του εγγεγραμμένου κύκλου. Αν μόνο το d είναι γνωστό, τότε το εμβαδό του εξαγώνου είναι:

 

Η περίμετρος ενός κανονικού εξαγώνου με μήκος πλευράς α είναι 6α, η ακτίνα του περιγεγραμμένου σε αυτό κύκλου α και η διάμετρος του εγγεγραμμένου κύκλου  .

Αν ένα κανονικό εξάγωνο έχει διαδοχικές κορυφές A, B, Γ, Δ, E, Ζ και αν P είναι οποιοδήποτε σημείο του περιγεγραμμένου σε αυτό κύκλου μεταξύ των B και Γ, τότε ισχύει PE + PΖ = PA + PB + PΓ + PΔ.

Κυκλικό εξάγωνο

Επεξεργασία

Κυκλικό εξάγωνο ονομάζεται οποιοδήποτε εξάγωνο εγγεγραμμένο σε κύκλο, με τις πλευρές του εν γένει όλες άνισες μεταξύ τους. Αν οι διαδοχικές πλευρές ενός τέτοιου εξαγώνου έχουν μήκη α, β, γ, δ, ε, ζ, τότε οι τρεις κύριες διαγώνιοί του περνούν από το ίδιο σημείο στο εσωτερικό του αν και μόνο αν αγε = βδζ.[1]

Εξάγωνο εγγεγραμμένο σε κωνική τομή

Επεξεργασία

Το θεώρημα του Πασκάλ (γνωστό και ως Hexagrammum Mysticum Theorem) λέει ότι αν ένα οποιοδήποτε εξάγωνο είναι εγγεγραμμένο σε κωνική τομή και προεκτείνουμε τα ζεύγη των αντίθετων πλευρών του μέχρι που να συναντηθούν, τότε τα τρία αυτά σημεία τομής θα βρίσκονται πάνω στην ίδια ευθεία, τη λεγόμενη «γραμμή Πασκάλ» αυτού του σχήματος.

Εξάγωνο εφαπτόμενο σε κωνική τομή

Επεξεργασία

Αν ABCDEF είναι ένα εξάγωνο που σχηματίζεται από έξι ευθείες εφαπτόμενες σε κωνική τομή, τότε οι τρεις κύριες διαγώνιοί του AD, BE και CF τέμνονται σε ένα σημείο (Θεώρημα του Brianchon).

Συγγενικά σχήματα

Επεξεργασία
 
Το κανονικό εξάγωνο μπορεί να δημιουργηθεί ως ένα κόλουρο ισόπλευρο τρίγωνο, με σύμβολο Σλέφλι t{3}. Αυτή η μορφή έχει συμμετρία μόνο D3. Σε αυτό το σχήμα οι παραμένουσες πλευρές του αρχικού τριγώνου είναι γαλάζιες, ενώ οι νέες είναι κόκκινες.
 
Το εξάγραμμα μπορεί να δημιουργηθεί με την προέκταση των 6 πλευρών ενός κανονικού εξαγώνου μέχρι που να συναντηθούν σε 6 νέες κορυφές.
 
Ενα κοίλο εξάγωνο
 
Ενα «αυτοτεμνόμενο» εξάγωνο (αστεροειδές πολύγωνο)
 
Μη επίπεδο κανονικό εξάγωνο αποτελούμενο από τις ακμές ενός κύβου

Πολύγωνα Petrie

Επεξεργασία

Το κανονικό εξάγωνο είναι το πολύγωνο Πέτρι για τα παρακάτω κανονικά και ομοιομορφικά πολύτοπα, που παρατίθενται σε ορθογώνιες προβολές:

(3D) (5D)
 
κύβος
 
οκτάεδρο
 
5-simplex
 
ανορθωμένο 5-simplex
 
διανορθωμένο 5-simplex

Πολύεδρα με εξαγωνικές έδρες

Επεξεργασία

Δεν υπάρχει πλατωνικό στερεό με έδρες κανονικά εξάγωνα, επειδή ακριβώς τα εξάγωνα καλύπτουν πλήρως το επίπεδο, μην αφήνοντας «χώρο» για το «δίπλωμά» τους. Τα αρχιμήδεια στερεά με κάποιες έδρες τους εξαγωνικές είναι το κόλουρο τετράεδρο, το κόλουρο οκτάεδρο, το κόλουρο εικοσάεδρο (γνωστό από τη μπάλα του ποδοσφαίρου), το κόλουρο κυβοκτάεδρο και το κόλουρο εικοσιδωδεκάεδρο.

Αρχιμήδεια στερεά
 
κόλουρο τετράεδρο
 
κόλουρο οκτάεδρο
 
κόλουρο εικοσάεδρο
 
κόλουρο κυβοκτάεδρο
 
κόλουρο εικοσιδωδεκάεδρο

Υπάρχουν επίσης 9 στερεά Τζόνσον:

Πρισμοειδή
 
εξαγωνικό πρίσμα
 
εξαγωνικό αντιπρίσμα
 
εξαγωνική πυραμίδα
Λοιπά συμμετρικά πολύεδρα
 
κόλουρο τριάκις τετράεδρο
 
κόλουρο ρομβικό δωδεκάεδρο
 
κόλουρο ρομβικό τριακοντάεδρο
 

Κανονικά και ομοιόμορφα μωσαϊκά με εξάγωνα

Επεξεργασία
 
Το κανονικό εξάγωνο μπορεί να καλύψει το επίπεδο με σύμβολο Schläfli {6,3}, έχοντας 3 εξάγωνα γύρω από κάθε κορυφή.
 
Μια δεύτερη εξαγωνική κάλυψη του επιπέδου μπορεί να σχηματισθεί ως κόλουρη τριγωνική ή ρομβοειδής κάλυψη, με το ένα από τα τρία εξάγωνα με διαφορετικό χρώμα.
 
Μια δεύτερη εξαγωνική κάλυψη του επιπέδου γίνεται με 3 χρωματιστά εξάγωνα γύρω από κάθε κορυφή.
 
Τριεξαγωνική κάλυψη
 
Τριεξαγωνική κάλυψη
 
Ρομβοτριεξαγωνική κάλυψη
 
Κόλουρη τριεξαγωνική κάλυψη

Εξάγωνα στη φύση και τεχνητά

Επεξεργασία

Δείτε επίσης

Επεξεργασία


Περαιτέρω ανάγνωση

Επεξεργασία

Εξωτερικοί σύνδεσμοι

Επεξεργασία

Ελληνικά άρθρα

Επεξεργασία

Ξενόγλωσσα άρθρα

Επεξεργασία

Παραπομπές

Επεξεργασία
  1. Cartensen, Jens, "About hexagons", Mathematical Spectrum, τόμος 33(2) (2000-2001), σσ. 37-40.