To 1-φθοροβουτάνιο[2] είναι οργανική χημική ένωση, που περιέχει άνθρακα, υδρογόνο και φθόριο, με χημικό τύπο C4H9F, αλλά συχνά αποδίδεται με το σύντομο συντακτικό τύπο CH3CH2CH2CH2F. Ανήκει στην ομόλογη σειρά των αλαλκανίων, δηλαδή στους άκυκλους κορεσμένους αλυδρογονάνθρακες. Το καθαρό 1-φθοροβουτάνιο, στις «συνηθισμένες συνθήκες», δηλαδή θερμοκρασία 25°C και πίεση 1 atm, είναι υγρό. Με βάση το χημικό τύπο του έχει τα ακόλουθα τρία (3) ισομερές θέσης:

  1. 2-φθοροβουτάνιο.
  2. Μεθυλο-1-φθοροπροπάνιο.
  3. Μεθυλο-2-φθοροπροπάνιο.
1-φθοροβουτάνιο
Γενικά
Όνομα IUPAC 1-φθοροβουτάνιο
Άλλες ονομασίες 1-βουτυλοφθορίδιο
Χημικά αναγνωριστικά
Χημικός τύπος C4H9F
Μοριακή μάζα 76,113863 amu[1]
Σύντομος
συντακτικός τύπος
CH3CH2CH2CH2F
Συντομογραφίες BuF
Αριθμός CAS 2366-52-1
SMILES CCCCF
Ισομέρεια
Ισομερή θέσης 3
2-φθοροβουτάνιο
μεθυλο-1-φθοροπροπάνιο
μεθυλο-2-φθοροπροπάνιο
Φυσικές ιδιότητες
Σημείο βρασμού 32-33 °C
Πυκνότητα 773,5 kg/m3
Δείκτης διάθλασης ,
nD
1,34
Εμφάνιση Υγρό
Χημικές ιδιότητες
Εκτός αν σημειώνεται διαφορετικά, τα δεδομένα αφορούν υλικά υπό κανονικές συνθήκες περιβάλλοντος (25°C, 100 kPa).

ΟνοματολογίαΕπεξεργασία

Η ονομασία «φθοροβουτάνιο» προέρχεται από την ονοματολογία κατά IUPAC. Συγκεκριμένα, το πρόθεμα «βουτ-» δηλώνει την παρουσία τεσσάρων (4) ατόμων άνθρακα ανά μόριο της ένωσης, το ενδιάμεσο «-αν-» δείχνει την παρουσία μόνο απλών δεσμών μεταξύ ατόμων άνθρακα στο μόριο και η κατάληξη «-ιο» φανερώνει ότι δεν περιέχει χαρακτηριστικές ομάδες που έχουν χαρακτηριστικές καταλήξεις. Το αρχικό πρόθεμα «φθορο-» δηλώνει την παρουσία ενός (1) ατόμου φθορίου ανά μόριο της ένωσης. Τέλος, ο αρχικός αριθμός θέσης «1-», δηλώνει τον αριθμό θέσης του ατόμου του άνθρακα με το οποίο ενώνεται το άτομο του φθορίου, για να διαχωριστεί η ένωση από την ισομερή της 2-φθοροβουτάνιο.

Μοριακή δομήΕπεξεργασία

Δεσμοί[3]
Δεσμός τύπος δεσμού ηλεκτρονική δομή Μήκος δεσμού Ιονισμός
C-H σ 2sp3-1s 109 pm 3% C- H+
C-C σ 2sp3-2sp3 154 pm
C-F σ 2sp3-2sp3 139 pm 43% C+ F-
Κατανομή φορτίων
σε ουδέτερο μόριο
F -0,43
H +0,03
C#1 +0,37
C#4 -0,09
C#2,#3 -0,06

ΠαραγωγήΕπεξεργασία

Με υποκατάσταση υδροξυλίου από φθόριοΕπεξεργασία

Με επίδραση υδροφθορίου (HF) σε 1-βουτανόλη (CH3CH2CH2CH2OH)[4]:

 

Με υποκατάσταση χλωρίου από φθόριοΕπεξεργασία

Με επίδραση φθοριούχου υφυδραργύρου (Hg2F2) σε 1-χλωροβουτάνιο (CH3CH2CH2CH2Cl)[5][6]:

 

Με προσθήκη φθοραιθανίου σε αιθένιοΕπεξεργασία

Με προσθήκη φθοραιθάνιου σε αιθένιο παράγεται 1-φθοροβουτάνιο[7]::

 

Με προσθήκη φθορομεθανίου σε κυκλοπροπάνιοΕπεξεργασία

Με προσθήκη φθορομεθανίου σε κυκλοπροπάνιο παράγεται 1-φθοροβουτάνιο[8]:

   

Με προσθήκη υδροφθορίου σε κυκλοβουτάνιοΕπεξεργασία

Με προσθήκη υδροφθορίου (ΗF) σε κυκλοβουτάνιο παράγεται 1-φθοροβουτάνιο[9]:

   

Χημικές ιδιότητες και παράγωγαΕπεξεργασία

Αντιδράσεις υποκατάστασηςΕπεξεργασία

  • Οι αντιδράσεις είναι πολύ πιο αργές σε σύγκριση με τα αντίστοιχα αλκυλαλογονίδια των άλλων αλογόνων, γιατί ο μηχανισμός που επικρατεί σ' αυτές τις αντιδράσεις υποκαταστάσεως είναι ο SN2.

Υποκατάσταση από υδροξύλιοΕπεξεργασία

Κατά την υδρόλυσή του με εναιώρημα υδροξειδίου του αργύρου (AgOH) σχηματίζεται 1-βουτανόλη (CH3CH2CH2CH2OH)[10]:

 

Υποκατάσταση από αλκοξύλιοΕπεξεργασία

Με αλκοολικά άλατα (RONa) σχηματίζει αλκυλoβουτυλαιθέρα (CH3CH2CH2CH2OR)[10]:

 

Υποκατάσταση από αλκινύλιοΕπεξεργασία

Με αλκινικά άλατα (RC≡CNa) σχηματίζει αλκίνιο (RC≡CCH2CH2CH2CH3). Π.χ.[10]:

 

Υποκατάσταση από ακύλιοΕπεξεργασία

Με καρβονικά άλατα (RCOONa) σχηματίζει καρβονικό βουτυλεστέρα (RCOOCH2CH2CH2CH3)[10]:

 

Υποκατάσταση από κυάνιοΕπεξεργασία

Με κυανιούχο νάτριο (NaCN) σχηματίζει πεντανονιτρίλιο (CH3CH2CH2CH2CN)[10]:

 

Υποκατάσταση από αλκύλιοΕπεξεργασία

Με αλκυλολίθιο (RLi) σχηματίζει αλκάνιο[10]:

 

Υποκατάσταση από σουλφυδρίλιοΕπεξεργασία

Με όξινο θειούχο νάτριο (NaSH) σχηματίζει 1-βουτανοθειόλη (CH3CH2CH2CH2SH)[10]:

 

Υποκατάσταση από σουλφαλκύλιοΕπεξεργασία

Με θειολικό νάτριο (RSNa) σχηματίζει αλκυλοβουτυλοθειαιθέρα (RSCH2CH2CH2CH3)[10]:

 

Υποκατάσταση από ιώδιοΕπεξεργασία

Με ιωδιούχο νάτριο (NaI) σχηματίζει 1-ιωδοβουτάνιο (CH3CH2CH2CH2I)[10]:

 

Υποκατάσταση από αμινομάδαΕπεξεργασία

Με αμμωνία (NH3) σχηματίζει 1-βουταναμίνη (CH3CH2CH2CH2NH2)[10]:

 

Υποκατάσταση από αλκυλαμινομάδαΕπεξεργασία

Με πρωυτοταγείς αμίνες (RNH2) σχηματίζει N-αλκυλο-1-βουταναμίνη (RNHCH2CH2CH2CH3)[10]:

 

Υποκατάσταση από διαλκυλαμινομάδαΕπεξεργασία

Με δευτεροταγείς αμίνες (R'NHR) σχηματίζει N,N-διαλκυλο-1-βουταναμίνη [R'N(CH2CH2CH2CH3)R][10]:

 

Υποκατάσταση από τριαλκυλαμινομάδαΕπεξεργασία

Με τριτοταγείς αμίνες [R'N(R)R"] σχηματίζει φθοριούχο N,N,N-τριαλκυλοβουτυλαμμώνιο {[R'N(CH2CH2CH2CH3)(R)R"]F}[11]:

 

Υποκατάσταση από φωσφύλιοΕπεξεργασία

Με φωσφίνη σχηματίζει 1-βουτανοφωσφαμίνη[12]:

 

Υποκατάσταση από νιτροομάδαΕπεξεργασία

Με νιτρώδη άργυρο (AgNO2) σχηματίζει 1-νιτροβουτάνιο (CH3CH2CH2CH2NO2)[13]:

 

Υποκατάσταση από φαινύλιοΕπεξεργασία

Με επίδραση τύπου Friedel-Crafts σε βενζολίου παράγεται βουτυλοβενζόλιο:

 

ΠεριφθορίωσηΕπεξεργασία

Το 1-φθοροβουτάνιο αντιδρά με το τριφθοριούχο κοβάλτιο, αντικαθιστώντας όλα τα άτομα υδρογόνου με άτομα φθορίου. Έτσι παράγεται (κυρίως) δεκαφθοροβουτνιο[14]:

 

Παραγωγή οργανομεταλλικών ενώσεωνΕπεξεργασία

1. Με λίθιο (Li σχηματίζει βουτυλολίθιο[15]:

 

2. Με μαγνήσιο (Mg) σχηματίζει βουτυλομαγνησιοφθορίδιο [16]:

 

ΑναγωγήΕπεξεργασία

1. Με λιθιοαργιλλιοϋδρίδιο (LiAlH4) παράγεται βουτάνιο.[17]:

 

2. Με «υδρογόνο εν τω γενάσθαι», δηλαδή μέταλλο + οξύ παράγεται βουτάνιο.[18]:

 

3. Με σιλάνιο, παρουσία τριφθοριούχου βορίου, παράγεται βουτάνιο[19]:

 

4. Αναγωγή από ένα αλκυλοκασσιτεράνιο. Π.χ.[20]:

 

Αντιδράσεις προσθήκηςΕπεξεργασία

1. Σε αλκένια. Π.χ. με αιθένιο (CH2=CH2) παράγει 1-φθορεξάνιο (CH3CH2CH2CH2CH2CH2F)[21]:

 

2. Σε αλκίνια. Π.χ. με αιθίνιο (HC≡CH) παράγει 1-φθορο-1-εξένιο (CH3CH2CH2CH2CH=CHF)[22]:

 

3. Η αντίδραση του 1-φθοροβουτανίου με συζυγή αλκαδιένια αντιστοιχεί κυρίως σε 1,4-προσθήκη, αν και είναι επίσης δυνατές η 1,2-προσθήκη και η 3,4-προσθήκη, με τη χρήση κατάλληλων συνθηκών. Π.χ[23]:

  (1,4-προσθήκη)
  (1,2-προσθήκη)
  (3,4-προσθήκη)

4. Σε κυκλοαλκάνια που έχουν τριμελή ή τετραμελή δακτύλιο. Π.χ. με κυκλοπροπάνιο παράγει 1-φθορεπτάνιο[24]:

   

5. Σε ετεροκυκλικές ενώσεις που έχουν τριμελή ή τετραμελή δακτύλιο. Π.χ. με εποξυαιθάνιο παράγει βουτοξυ-2-φθοραιθάνιο[25]:

   

Αντίδραση απόσπασηςΕπεξεργασία

Με απόσπαση υδροφθορίου (HF) από 1-φθοροβουτάνιο παράγεται 1-βουτένιο[26]:

 

Παρεμβολή καρβενίωνΕπεξεργασία

  • Τα καρβένια (π.χ. [:CH2]) μπορούν παρεμβληθούν στους δεσμούς C-H. Π.χ. έχουμε[27]:

 

  • Η αντίδραση είναι ελάχιστα εκλεκτική και αυτό σημαίνει ότι κατά προσέγγιση έχουμε;
1. Παρεμβολή στους τρεις (3) δεσμούς CH2-H. Παράγεται 1-φθοροπεντάνιο.
2. Παρεμβολή στους δυο (2) δεσμούς C#2H-H: Παράγεται 2-μεθυλο-1-φθοροβουτάνιο.
3. Παρεμβολή στους δυο (2) δεσμούς C#3H-H: Παράγεται 3-μεθυλο-1-φθοροβουτάνιο.
4. Παρεμβολή στους δυο (2) δεσμούς C#1H-H: Παράγεται 2-φθοροπεντάνιο.

Προκύπτει επομένως μίγμα 1-φθοροπεντάνιου ~33%, 2-μεθυλο-1-φθοροβουτάνιου ~22%, 3-μεθυλο-1-φθοροβουτάνιου ~22% και 2-φθοροπεντάνιου ~22%.

Σημειώσεις και αναφορέςΕπεξεργασία

  1. Διαδικτυακός τόπος Catalog of Chemical Supplies
  2. Για εναλλακτικές ονομασίες και συμβολισμούς δείτε τον πίνακα πληροφοριών.
  3. Τα δεδομένα προέρχονται εν μέρει από το «Table of periodic properties of thw Ellements», Sagrent-Welch Scientidic Company και Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, Σελ. 34.
  4. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 185, §7.2.1, R = CH3CH2CH2CH2, X = F.
  5. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 185, §7.2.8.
  6. Πραγματοποιείται και με υποκατάσταση βρωμίου ή ιωδίου, αλλά πιο αργά και δύσκολα.
  7. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, για Ε = CH2CH3 και Nu = F.
  8. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για κυκλοαλκάνια και για Ε = CH3 και Nu = F σε συνδυασμό με Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §1.2., σελ. 22-25
  9. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για κυκλοαλκάνια και για Ε = H και Nu = F σε συνδυασμό με Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §1.2., σελ. 22-25
  10. 10,00 10,01 10,02 10,03 10,04 10,05 10,06 10,07 10,08 10,09 10,10 10,11 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 186, §7.3.1.
  11. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 243, §10.2.Α, R = CH2CH2CH2CH3, X = F.
  12. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 267, §11.3.Α1, R = CH3CH2CH2CH2, X = F.
  13. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 244, §10.3.Α, R = CH2CH2CH2CH3, X = F.
  14. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 185, §7.2β, προσαρμογή αντίδρασης για 1-φθοροβουτάνιο
  15. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, §5.1. σελ.82
  16. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.5, R = CH2CH2CH2CH3, X = F.
  17. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.3α, R = CH2CH2CH2CH3, X = F.
  18. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.3β, R = CH2CH2CH2CH3, X = F.
  19. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, σελ. 291-293, §19.1.
  20. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, Σελ. 42, §4.3.
  21. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, για Ε = CH3CH2CH2CH2 και Nu = F.
  22. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για αλκίνια και για Ε = CH3CH2CH2CH2 και Nu = F με βάση και την §8.1, σελ. 114-116.
  23. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για αλκαδιένια και για Ε = CH3CH2CH2CH2 και Nu = F με βάση και την §8.2, σελ. 116-117.
  24. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για κυκλοαλκάνια και για Ε = CH3CH2CH2CH2 και Nu = F σε συνδυασμό με Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §1.2., σελ. 22-25
  25. Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §2.1., σελ. 16-17, εφαρμογή γενικής αντίδρασης για Nu = F.
  26. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.153, §6.3.1α.
  27. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 155, §6.7.3.

ΠηγέςΕπεξεργασία

  • Γ. Βάρβογλη, Ν. Αλεξάνδρου, Οργανική Χημεία, Αθήνα 1972
  • Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991
  • SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999
  • Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982
  • Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985