3 (αριθμός)
αριθμός
Το 3 (τρία) (ακούστε ) είναι ο φυσικός αριθμός που βρίσκεται μετά από το 2 και πριν από το 4. Στο ελληνικό σύστημα αρίθμησης το 3 γράφονταν ως Γ΄ ή γ΄, ενώ στο ρωμαϊκό σύστημα αρίθμησης ως III.
| ||||
---|---|---|---|---|
Περιγραφικά | ||||
Απόλυτος | τρία | |||
Τακτικός | 3ο | |||
Αριθμητικά χαρακτηριστικά | ||||
Παραγοντοποίηση | πρώτος | |||
Διαιρέτες | 1 3 (σύνολο: 1) | |||
Άθροισμα διαιρετών | 1 | |||
Παραγοντικό | 6 | |||
Παραγοντικό φυσικού λογάριθμου | 3.0986122886681 | |||
Φυσικός λογάριθμος παραγοντικού | 1.7917594692281 | |||
Σε άλλα συστήματα | ||||
Ελληνικό | Γ´ | |||
Ρωμαϊκό | III | |||
Δυαδικό | 112 | |||
Τριαδικό | 103 | |||
Τετραδικό | 34 | |||
Πενταδικό | 35 | |||
Εξαδικό | 36 | |||
Οκταδικό | 38 | |||
Δωδεκαδικό | 312 | |||
Δεκαεξαδικό | 316 | |||
Εικοσαδικό | 320 | |||
Εξηνταδικό | 360 |
Το 3 στα ΜαθηματικάΕπεξεργασία
- Ένας φυσικός αριθμός είναι ακριβώς διαιρετός διά 3 αν το άθροισμα των ψηφίων του είναι πολλαπλάσιο του 3. Ο κανόνας αυτός λειτουργεί σε κάθε θεσιακό σύστημα αρίθμησης στο οποίο η βάση του διαιρείται διά 3 αφήνει υπόλοιπο 1. Λειτουργεί, δηλαδή, στο τετραδικό σύστημα, στο επταδικό σύστημα, στο δεκαδικό σύστημα, στο δεκατριαδικό σύστημα, στο δεκαεξαδικό σύστημα κ.τ.λ..
- Το 3 είναι πρώτος αριθμός γιατί διαιρείται μόνο με τον εαυτό του και τη μονάδα.
- Αποτελεί τον πρώτο αριθμό Φερμά της μορφής . Ο δεύτερος είναι ο 5.[1]
- Το τρίγωνο έχει τρεις γωνίες.
Πολλαπλασιασμός
x*3 | 0*3 | 1*3 | 2*3 | 3*3 | 4*3 | 5*3 | 10*3 | 3 * π | 3 * e | 3 * φ | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 3 | 6 | 9 | 12 | 15 | 30 | 9,425 | 8,154 | 4,854 |
Διαίρεση
3/x | 3/0 | 3/1 | 3/2 | 3/3 | 3/4 | 3/5 | 3/10 | 3 / π | 3 / e | 3 / φ | |
---|---|---|---|---|---|---|---|---|---|---|---|
- | 3 | 1,5 | 1 | 0,75 | 0,6 | 0,3 | 0,955 | 1,104 | 1,854 | ||
x/3 | 0/3 | 1/3 | 2/3 | 3/3 | 4/3 | 5/3 | 10/3 | π / 3 | e / 3 | φ / 3 | |
0 | 0,3333 | 0,6667 | 1 | 1,3333 | 1,6667 | 3,3333 | 1,047 | 0,906 | 0,539 |
Δυνάμεις
3x | 30 | 31 | 32 | 33 | 3π | 3e | 3φ | |
---|---|---|---|---|---|---|---|---|
1 | 3 | 9 | 27 | 31,544 | 19,807 | 5,916 | ||
x3 | 03 | 13 | 23 | 33 | π3 | e3 | φ3 | |
0 | 1 | 8 | 27 | 31,006 | 20,079 | 4,236 |
Λογάριθμοι και ρίζεςΕπεξεργασία
Δυαδικός lb(3) |
Φυσικός ln(3) |
Δεκαδικός lg(3) |
Τετραγωνική √3 |
Κυβική 3√3 |
---|---|---|---|---|
1,585 | 1,099 | 0,477035
|
1,732 | 1,442 |
Τριγωνομετρικές συναρτήσεις
Τιμή σε | ημ(3) | συν(3) | εφ(3) | ημ-1(3) | συν-1(3) | εφ-1(3) |
---|---|---|---|---|---|---|
Ακτίνια | 0,14 | −0,99 | −0,14 | 1,25 | ||
Μοίρες | 8,09 | −56,72 | −8,17 | 71,57 |
Κοντινοί πρώτοι αριθμοίΕπεξεργασία
Διάταξη κατά την σπείρα Ούλαμ. Πρώτοι αριθμοί με γαλανό χρωματισμό στο υπόβαθρο, πράσινο οι αριθμοί με 3 διαιρέτες, κόκκινο οι αριθμοί με μεγάλο σύνολο διαιρετών.
39 | 38 | 37 | 36 | 35 | 34 | 33 |
40 | 19 | 18 | 17 | 16 | 15 | 32 |
41 | 20 | 7 | 6 | 5 | 14 | 31 |
42 | 21 | 8 | 3 | 4 | 13 | 30 |
43 | 22 | 9 | 10 | 11 | 12 | 29 |
44 | 23 | 24 | 25 | 26 | 27 | 28 |
45 | 46 | 47 | 48 | 49 | 50 | 51 |
Άλλες πράξεις του 3Επεξεργασία
- 3! = 3·2 = 6.
- 23 = 3↑↑2 = 33 = 27.
- Οι τετραγωνικές ρίζες του 3 είναι δύο άρρητοι αριθμοί, ίσοι κατά προσέγγιση ±1,7320508075688772935274463415059
Το 3 σε άλλα αριθμητικά συστήματα εκτός του δεκαδικούΕπεξεργασία
Βάση | Σύστημα αρίθμησης | Παράσταση |
---|---|---|
2 | Δυαδικό | 11 |
3 | Τριαδικό | 10 |
Σε κάθε αριθμητικό σύστημα με βάση μεγαλύτερη από 3 | 3 |
Υποσύνολα των φυσικών αριθμών στα οποία ανήκει το 3Επεξεργασία
- Το 3 είναι ο μικρότερος περιττός[2]πρώτος αριθμός[3].[4][5] και δεύτερος μικρότερος συνολικά, μετά το 2.
- Το 3 είναι ο μικρότερος πρώτος αριθμός Φέρματ (Fermat number)[3], αφού ικανοποιεί τον τύπο 22n+1, για n = 0.
- Το 3 είναι ο μικρότερος πρώτος αριθμός Μερσέν (Mersenne number)[3], αφού ικανοποιεί τον τύπο 2n-1, για n=2.
- Το 3 είναι ο μικρότερος «πρώτος τυχερός αριθμός» (lucky number)[3], αφού «επιβιώνει» από την αφαίρεση από τη λίστα των μηδενικών φυσικών αριθμών αρχικά των άρτιων αριθμών, έπειτα κάθε τρίτου αριθμού και τέλος κάθε έβδομου αριθμού.
- Το 3 είναι ο δεύτερος μικρότερος πρώτος αριθμός Σόφη Ζερμαίν(Sophie Germain number)[3], αφού 2·3 + 1 = 7, δηλαδή ένας πρώτος αριθμός.
- Το 3 είναι ο δεύτερος μικρότερος πρώτος παραγοντικός αριθμός (fuctional number)[3], αφού ικανοποιεί τον τύπο n! + 1, για n=2.
- Το 3 είναι ο δεύτερος μικρότερος πρώτος αριθμός Λούκας (Lucas prime)[3], αφού L3 = L3-1+ L3-2 = 1 + 2 = 3.
- Το 3 είναι ο δεύτερος μικρότερος πρώτος αριθμός Στερν (Stern prime)[3], αφού για b = 1, 3 - 2·1² = 1, που έχει εξαιρεθεί από τους πρώτους αριθμούς.
- Το 3 είναι ο μικρότερος «μοναδικός πρώτος αριθμός» (unique prime), εξαιτίας των ιδιοτήτων του αντιστρόφου του (που είναι το 1/3).
- Το άθροισμα των διαιρετών του 3 είναι σ1(3) = 1 + 3 = 4.
- Το 3 είναι ο δεύτερος μικρότερος και ο μόνος πρώτος «τριγωνικός αριθμός», αφού 1 + 2 = 3.
- Το 3 είναι ο μόνος πρώτος αριθμός που είναι κατά 1 μικρότερος από έναν τετραγωνικό αριθμό, το 4 = 2² και 3 = 4 - 1. Όλοι οι άλλοι φυσικοί αριθμοί που είναι κατά 1 μικρότεροι από έναν τετραγωνικό αριθμό είναι αναγκαστικά σύνθετοι, γιατί n² - 1 = (n - 1)(n + 1) και μόνο για n = 2 προκύπτει πρώτος αριθμός.
- Το 3 είναι το 4° μέλος της ακολουθίας Φιμπονάτσι.
- Το 3 είναι το #0 και #3 μέλος της ακολουθίας Περίν.
- Το 3 είναι το 4° μέλος της ανοικτής μαιανδρικής ακολουθίας.
- Το 3 είναι ο μικρότερος από τους «αρσενικούς αριθμούς», σύμφωνα με τους Πυθαγόρειους.
Το 3 στη ΓεωμετρίαΕπεξεργασία
Τρία (3) μη συνευθειακά σημεία ορίζουν ένα επίπεδο, αλλά και έναν κύκλο.
Υπάρχουν 3 κανονικά πολύεδρα, που έχουν ως έδρες τρίγωνα, το τετράεδρο, το οκτάεδρο και το εικοσάεδρο.
Το 3 στη ΧημείαΕπεξεργασία
- Ο ατομικός αριθμός 3 αντιστοιχεί στο λίθιο.
- Το ισοτοπικό ατομικό βάρος 3 (κατά προσέγγιση μονάδας) αντιστοιχεί στο τρίτιο (T). Μερικά ισοβαρή ηλεκτρικώς ουδέτερα χημικά ειδη με μοριακή μάζα 3 (κατά προσέγγιση μονάδας) είναι τα ακόλουθα:
- Ήλιο-3 (3He).
- Δευτεριούχο υδρογόνο (HD).
- Τρυδρογόνο (H3).
- Η ομάδα 3 του περιοδικού πίνακα των χημικών στοιχείων αντιστοιχεί στην πρώην IIIB ομάδα, δηλαδή στην ομάδα του σκανδίου.
- Η 3η περίοδος του περιοδικού πίνακα των χημικών στοιχείων αρχίζει από το νάτριο και τελειώνει στο αργό.
- Τα σύμπλοκα με αριθμό συναρμογής 3 είναι σπάνια. Τα σύμπλοκα αυτά έχουν γενικό τύπο ML3, όπου ένα από τα προηγούμενα ιόντα και L ένας μονοδραστικός συναρμωτής. Μερικά παραδείγματα τέτοιων συμπλόκων είναι οι ενώσεις με γενικό τύπο [Cr(NR2)3] και [Fe(NR2)3], όπου R: Si(CH3)3, ClF3, BrF3 κ.ά.. Επίσης τα ιόντα [HgI3]-, [Pt(PPh3)3]- και γενικού τύπου [MO3]-, όπου M: Cl, Br, I. Για τα σύμπλοκα με αριθμό συναρμογής 3 υπάρχουν 3 δυνατές διαμορφώσεις:
- Επίπεδη τριγωνική, με το κεντρικό άτομο στο κέντρο του νοητού τριγώνου που σχηματίζουν 3 οι συναρμοτές.
- Τριγωνική πυραμιδική, με το κεντρικό άτομο στην κορυφή της (νοητής) πυραμίδας και τους 3 συναρμοτές να ορίζουν τη νοητή βάση της. Το κεντρικό άτομο στην περίπτωση αυτή έχει ένα μονήρες ζεύγος ηλεκτρονίων. Σημειώνεται ότι υπάρχουν και απλές χημικές ενώσεις με τέτοια δομή, όπως π.χ. η αμμωνία.
- Τύπου Τ, με το κεντρικό άτομο στο μέσο της (νοητής) οριζόντιας γραμμής του Τ, τους 2 συναρμοτές εκατέρωθεν και τον τρίτο συναρμοτή στο τέλος της νοητής κάθετης γραμμής του T. Σχηματίζεται σε σπάνιες περιπτώσεις, όπως στα σύμπλοκα [ClF3]-] και [BrF3]-][6].
- Το προπάνιο (C3H8) είναι η απλούστερη οργανική ένωση με τρία (3) άτομα άνθρακα.
- Το τρία (3) είναι ο μικρότερος αριθμός ατόμων που απαιτούνται για να σχηματίσουν δακτύλιο. Επομένως, η απλούστερη ισοκυκλική οργανική ένωση είναι το κυκλοπροπάνιο, με τρία (3) άτομα άνθρακα. Η χαρακτηριστική συλλαβή που φανερώνει την ύπαρξη τριών (3) ατόμων στις ετεροκυκλικές ενώσεις είναι «-ιρ-». Παραδείγματα οξιράνιο, αζιριδίνη, διοξιράνιο. Παράδειγμα ανόργανης ισοκυκλικής ένωσης με τριμελή δακτύλιο αποτελεί η τριαζίνη, ενώ το τριοξιράνιο είναι τριατομική ισοκυκλική αλλομορφή του οξυγόνου.
- Το τριβοράνιο(7) (B3H7) αποτελεί παράδειγμα βοράνιου με τρία (3) άτομα βορίου.
- Το τριαζάνιο (N3H5) αποτελεί παράδειγμα αζάνιου με τρία (3) άτομα αζώτου,.θρεόζη και
- To τριοξειδάνιο (H2O3) αποτελεί παράδειγμα οξειδάνιου με τρία (3) άτομα οξυγόνου.
- To τρισιλάνιο (Si3H8) αποτελεί παράδειγμα σιλάνιου με τρία (3) άτομα πυριτίου.
- Η τριφωσφίνη (P3H5) αποτελεί παράδειγμα φωσφανίου με τρία (3) άτομα φωσφόρου.
- Το τρισουλφάνιο (H2S3) αποτελεί παράδειγμα σουλφανίου με τρία (3) άτομα θείου.
- Τα απλούστερα σάκχαρα είναι οι δύο (2) τριόζες γλυκεριναλδεΰδη και διυδροξυακετόνη.
- Τα ω-3 ακόρεστα λιπαρά οξέα θεωρείται ότι είναι ιδιαίτερα ωφέλιμα για την ανθρώπινη υγεία.
Ναυτική ιστορίαΕπεξεργασία
- Οι αρχαίες τριήρεις είχαν τρεις (3) σειρές κωπηλατών.
- Τα τρίκροτα είχαν τρεις (3) σειρές πυροβόλων και αποτελούσαν πλοία της γραμμής.
Αναφορές και παρατηρήσειςΕπεξεργασία
- ↑ «A000215 - OEIS». oeis.org. Ανακτήθηκε στις 14 Νοεμβρίου 2017.
- ↑ Ικανοποιεί τον τύπο 2k+1, για k=1.
- ↑ 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 Το 1 δεν συνυπολογίζεται στους πρώτους αριθμούς.
- ↑ Διαιρείται ακριβώς μόνο από το 1) και τον εαυτό του.
- ↑ Bryan Bunch, The Kingdom of Infinite Number. New York: W. H. Freeman & Company (2000): 39.
- ↑ Ιωάννη Α. Τοσσίδη, Χημεία Ενώσεων Συναρμογής, ΑΠΘ, Θεσσαλονίκη 1988, §2.3., σελ. 22-23.
Εξωτερικοί σύνδεσμοιΕπεξεργασία
Αυτό το μαθηματικό λήμμα χρειάζεται επέκταση. Μπορείτε να βοηθήσετε την Βικιπαίδεια επεκτείνοντάς το. |