Η βουτανάλη ή βουτυραλδεΰδη ή και βουτυρική αλδεΰδη (αγγλικά: butanal) είναι οργανική χημική ένωση, που περιέχει άνθρακα, Οξυγόνο και Υδρογόνο, με μοριακό τύπο C4H8O, αν και συχνά γράφεται πιο αναλυτικά ως CH3CH2CH2CHO ή και (συντομογραφικά) PrCHO. Είναι μια από τις αλδεΰδες. Η χημικά καθαρή βουτανάλη, στις συνηθισμένες συνθήκες, δηλαδή σε θερμοκρασία 25 °C και πίεση 1 atm), είναι ένα άχρωμο υγρό, με έντονη οσμή ιδρωμένων ποδιών, και θερμοκρασία βρασμού (υπό πίεση 1 atm) τους 75 °C. Αποτελεί ενδιάμεσο προϊόν στη παρασκευή διαφόρων βιομηχανικών υλικών, όπως πρώτες ύλες διαφόρων εφαρμογών πλαστικοποίησης, ως διαλύτης, ή ως αντιαφριστικό πρόσθετο.

Βουτανάλη
Butanal-skeletal.png
Butyraldehyde flat structure.png
Butyraldehyde-3D-balls.png
Γενικά
Όνομα IUPAC Βουτανάλη
Άλλες ονομασίες Βουτυραλδεΰδη
Χημικά αναγνωριστικά
Χημικός τύπος C4H8O
Μοριακή μάζα 72,11 amu
Σύντομος
συντακτικός τύπος
CH3CH2CH2CHO
Συντομογραφίες PrCHO
Αριθμός CAS 123-72-8
SMILES CCCC=O
InChI 1/C4H8O/c1-2-3-4-5/h4H,2-3H2,1H3
PubChem CID 261
ChemSpider ID 256
Δομή
Ισομέρεια
Ισομερή θέσης 25
Φυσικές ιδιότητες
Σημείο τήξης −99 °C
Σημείο βρασμού 74,8 °C
Πυκνότητα 800 kg/m3
Διαλυτότητα
στο νερό
76 kg/m3
Εμφάνιση Άχρωμο υγρό
Χημικές ιδιότητες
Ελάχιστη θερμοκρασία
ανάφλεξης
-7 °C
Σημείο αυτανάφλεξης 230 °C
Επικινδυνότητα
Hazard F.svg
Πολύ εύφλεκτη (F+)
Φράσεις κινδύνου R11
Φράσεις ασφαλείας (S2), S9, S29, S33
Κίνδυνοι κατά
NFPA 704

NFPA 704.svg

3
3
0
 
Εκτός αν σημειώνεται διαφορετικά, τα δεδομένα αφορούν υλικά υπό κανονικές συνθήκες περιβάλλοντος (25°C, 100 kPa).

Πίνακας περιεχομένων

ΙσομέρειαΕπεξεργασία

Με βάση το χημικό της τύπο, C4H8O, έχει τα ακόλουθα εικοσιπέντε (25) ισομερή:

  1. 1-βουτεν-1-όλη (ελάσσων ταυτομερές της βουτανάλης) με σύντομο συντακτικό τύπο CH3CH2CH=CHOH.
  2. 2-βουτεν-1-όλη ή 3-μεθυλαλλυλική αλκοόλη με σύντομο συντακτικό τύπο CH3CH=CHCH2OH.
  3. 3-βουτεν-1-όλη με σύντομο συντακτικό τύπο CH2=CHCH2CH2OH.
  4. 2-βουτεν-1-όλη (ελάσσων ταυτομερές της βουτανόνης) με σύντομο συντακτικό τύπο CH3CH2C(OH)=CH2.
  5. 2-βουτεν-2-όλη (ελάσσων ταυτομερές της βουτανόνης) με σύντομο συντακτικό τύπο CH3CH=C(OH)CH3.
  6. 3-βουτεν-2-όλη με σύντομο συντακτικό τύπο CH2=CHCH(OH)CH3.
  7. Μεθυλο-1-προπενόλη (ελάσσων ταυτομερές της μεθυλοπροπανάλης) με σύντομο συντακτικό τύπο (CH3)2C=CHOH.
  8. Μεθυλο-2-προπενόλη ή 2-μεθυλαλλυλική αλκοόλη με σύντομο συντακτικό τύπο CH2=C(CH3)CH2OH.
  9. Αιθυλοβινυλαιθέρας ή αιθοξυαιθένιο με σύντομο συντακτικό τύπο CH3CH2OCH=CH2.
  10. Μεθυλο-1-προπενυλαιθέρας ή 1-μεθοξυπροπένιο με σύντομο συντακτικό τύπο CH3OCH=CHCH3.
  11. Μεθυλο-2-προπενυλαιθέρας ή 3-μεθοξυπροπένιο με σύντομο συντακτικό τύπο CH3OCH2CH=CH2.
  12. Μεθυλο(μεθυλοβινυλ)αιθέρας ή 2-μεθοξυπροπένιο με σύντομο συντακτικό τύπο CH3OC(CH3)=CH2.
  13. Μεθυλοπροπανάλη (κύριο ταυτομερές) της μεθυλοπροπεν-1-όλης με σύντομο συντακτικό τύπο (CH3)2CHCHO.
  14. Βουτανόνη (κύριο ταυτομερές) της 2-βουτεν-2-όλης και της 2-βουτεν-3-όλης) με σύντομο συντακτικό τύπο CH3CH2COCH3.
  15. Κυκλοβουτανόλη με σύντομο συντακτικό τύπο  .
  16. 1-μεθυλοκυκλοπροπανόλη με σύντομο συντακτικό τύπο  .
  17. 2-μεθυλοκυκλοπροπανόλη με σύντομο συντακτικό τύπο  .
  18. Κυκλοπροπυλομεθανόλη με σύντομο συντακτικό τύπο  .
  19. Κυκλοπροπυλομεθυλαιθέρας με σύντομο συντακτικό τύπο  .
  20. Οξολάνιο με σύντομο συντακτικό τύπο  .
  21. 2-μεθυλοξετάνιο με σύντομο συντακτικό τύπο  .
  22. 3-μεθυλοξετάνιο με σύντομο συντακτικό τύπο  .
  23. Αιθυλοξιράνιο με σύντομο συντακτικό τύπο  .
  24. 2,2-διμεθυλοξιράνιο με σύντομο συντακτικό τύπο  .
  25. 2,3-διμεθυλοξιράνιο με σύντομο συντακτικό τύπο  .

ΠαραγωγήΕπεξεργασία

Κύρια βιομηχανική μέθοδοςΕπεξεργασία

Η συνηθισμένη βιομηχανική μέθοδος παραγωγής της είναι με προσθήκη μεθανάλης (CO + H2) σε προπένιο. Η μέθοδος είναι γνωστή ως «υδροφορμυλίωση προπενίου»[1]:

 

  • Παραδοσιακά, η υδροφορμυλίωση προπενίου για την παραγωγή βουτανάλης καταλύονταν αρχικά από σύμπλοκα κοβαλτίου - μονοξειδίου του άνθρακα, αλλά αργότερα ο χρησιμοποιούμενος καταλύτης αντικαταστάθηκε από σύμπλοκα ροδίου και τριφαινυλοφωσφίνης. Η επικρατούσα σχετική τεχνολογία περιλαμβάνει χρήση των ροδιούχων καταλυτών από το υδατοδιαλυτό αντιδραστήριο Tppts. Ένα υδατικό διάλυμα του παραπάνω αναφερόμενου ροδιούχου καταλύτη μετατρέπει το προπένιο σε βουτανάλη, που σχηματίζει μια ελαφρύτερη, μη αναμίξιμη με το νερό, υγρή φάση. Περίπου 6 εκατομμύρια τόννοι βουτανάλης παράγονται παγκοσμίως ανά έτος, με την παραπάνω αναψερόμενη διεργασία της υδροφορμυλίωσης προπενίου. Χρησιμοποιείται όμως και η παρακάτω αναφερόμενη μέθοδος της καταλυτικής αφυδρογόνωσης 1-βουτανόλης, ενώ παλαιότερα χρησιμοποιήθηκε και η μέθοδος υδρογόνωσης 2-βουυτενάλης, που παράγονταν με τη σειρά της από την αιθανάλη[2].
  • Χρειάζεται σχετικά ογκώδης καταλύτης, για να ευνοηθεί ο σχηματισμός βουτανάλης και όχι της ισομερούς της μεθυλοπροπανάλης.

Εναλλακτικές μέθοδοιΕπεξεργασία

Με επίδραση προπυλομαγνησιοαλογονίδιου σε φορμικό εστέραΕπεξεργασία

Με επίδραση προπυλομαγνησιοαλογονίδιου σε φορμικό εστέρα[3]:

 

Με μερική οξείδωση 1-βουτανόληςΕπεξεργασία

Με μερική οξείδωση 1-βουτανόλης, με σχετικά ήπια οξειδωτικά μέσα, όπως το τριοξείδιο του χρωμίου[4]:

 

Με έμμεση μερική αναγωγή βουτανικού οξέοςΕπεξεργασία

1. Αρχικά το βουτανικό οξύ μετατρέπεται σε βουτανοϋλοχλωρίδιο[5]:

 

2. Το βουτανοϋλοχλωρίδιο ανάγεται καταλυτικά άμεσα προς βουτανάλη:

 

Με οζονόλυση 4-οκτένιουΕπεξεργασία

Με οζονόλυση 4-οκτενίου παράγεται τελικά βουτανάλη[6]:

 

Με επίδραση υπεριωδικού οξέος σε 4,5-οκτανοδιόληΕπεξεργασία

Με επίδραση υπεριωδικού οξέος σε 4,5-οκτανοδιόλη παράγεται βουτανάλη[7]:

 

Χημικές ιδιότητες και παράγωγαΕπεξεργασία

Όταν η βουτανάλη εκτίθεται στον ατμοσφαιρικό αέρα οξειδώνεται από το ατμοσφαιρικό οξυγόνο σε βουτανικό οξύ.

Ταυτομέρεια με 1-βουτεν-1-όληΕπεξεργασία

Η βουτανάλη βρίσκεται πάντα σε χημική ισορροπία με την ταυτομερή της 1-βουτεν-1-όλη. Μπορεί να καταλυθεί προς την επιθυμητή κατεύθυνση με παρουσία οξέων ή βάσεων[8]:

 

Αναγωγή προς 1-βουτανόληΕπεξεργασία

Μπορεί να αναχθεί προς 1-βουτανόλη με τις ακόλουθες μεθόδους[9]

1. Με λιθιοαργιλιοϋδρίδιο (LiAlH4):

 

2. Με καταλυτική υδρογόνωση:

 

Αναγωγή προς βουτάνιοΕπεξεργασία

Μπορεί να αναχθεί προς βουτάνιο με την μεθόδο Wolff-Kishner[10]

 

Οξείδωση προς βουτανικό οξύΕπεξεργασία

Μπορεί να οξειδωθεί προς βουτανικό οξύ[11];

1. Με υπερμαγγανικό κάλιο:

 

2. Με τριοξείδιο του χρωμίου:

 

3. Με οξυγόνο:

 

4. Με αντιδραστήριο Tollens (αμμωνιακό διάλυμα νιτρικού αργύρου):

 

5. Με αντιδραστήρια Fehling:

 

  • Οι αντιδράσεις 4-5 παρουσιάζονται απλοποιημένες και χρησιμοποιούνται γενικά για την ανίχνευση αλδεϋδομάδας (-CHO).

Οξείδωση προς 2-οξοβουτανάληΕπεξεργασία

Μπορεί να οξειδωθεί προς 2-οξοβουτανάλη με χρήση διοξειδίου του σεληνίου[12]

 

Προσθήκη ύδατοςΕπεξεργασία

Με προσθήκη ύδατος σε προπανάλη παράγεται, σε χημική ισορροπία, η μη απομονώσιμη ασταθής 1,1-βουτανοδιόλη[13]:

 

Προσθήκη 1,2-αιθανοδιόληςΕπεξεργασία

Με προσθήκη 1,2-αιθανοδιόλης παράγεται 2-προπυλο-1,3-διοξολάνιο[14]:

   

Προσθήκη 1,2-αιθανοδιθειόληςΕπεξεργασία

Με προσθήκη 1,2-αιθανοδιθειόλης παράγεται 2-προπυλο-1,3-διθειολάνιο[14]:

   

   

Αντιδράσεις με αζωτούχες ενώσειςΕπεξεργασία

Αντιδρά με αρκετά είδη αζωτούχων ενώσεων του γενικού τύπου NH2A, όπου το A μπορεί να είναι υδρογόνο, αλκύλιο, υδροξύλιο, αμινοξάδα και διάφορα άλλα. Με βάση το γενικό τύπο η γενική αντίδραση είναι η ακόλουθη[15]:

 

  • Μερικά σχετικά παραδείγματα αμέσως παρακάτω:

1. Με αμμωνία παράγεται 1-βουτανιμίνη. Προκύπτει από την παραπάνω γενική με A = H:

 

2. Με πρωτοταγείς αμίνες (RNH2) παράγεται Ν-αλκυλο-1-βουτανιμίνη. Προκύπτει από την παραπάνω γενική με A = R:

 

3. Με υδροξυλαμίνη παράγεται 1-βουτανοξίμη. Προκύπτει από την παραπάνω γενική με A = OH:

 

4. Με υδραζίνη παράγεται αρχικά 1-βουτανυδραζόνη και με περίσσεια βουτανάλης διβουτυλιδεναζίνη. Προκύπτει από την παραπάνω γενική με A = NH2:

 

5. Με φαινυλυδραζίνη παράγεαι 1-βουτυλιδενο-2-φαινυλυδραζόνη. Προκύπτει από την παραπάνω γενική με A = NHPh::

 

6. Με υδραζινομεθαναμίδιο παράγεται (2-βουτυλιδενυδραζινο)μεθαναμίδιο. Προκύπτει από την παραπάνω γενική με A = NCONH2:

 

Συμπύκνωση με δευτεροταγείς αμίνεςΕπεξεργασία

Με επίδραση δευτεροταγούς αμίνης (RNHR') παράγεται αρχικά 1-(διαλκυλαμινο)-1-βουτανόλη, η οποία στη συνέχεια με αφυδάτωση μπορεί να δώσει Ν,Ν-διαλκυλο-1-βουτεν-1-αμίνη[16]:

 

Αλδολική συμπύκνωσηΕπεξεργασία

Με επίδραση βάσης έχουμε τη λεγόμενη αλδολική συμπύκνωση, η οποία όταν γίνεται με τον εαυτό της, παράγεται αρχικά 2-προπυλο-3-υδροξυεξανάλη, η οποία στη συνέχεια με αφυδάτωση μπορεί να δώσει 2-προπυλο-2-εξενάλη[17]:

 

Συμπύκνωση με α-αλεστέρεςΕπεξεργασία

Με επίδραση α-αλεστέρων (R'CHXCOOR) έχουμε την αντίδραση Darzen, κατά την οποία τελικά παράγεται 2-προπυλο-1-καρβαλκοξυοξιράνιο. Π.χ. με αλαιθανικό αλκυλεστέρα (XCH2COOR) έχουμε[18]:

   

Συμπύκνωση με «ενεργές» μεθυλενομάδεςΕπεξεργασία

Με την επίδραση «ενεργών» μεθυλενομάδων, δηλαδή ενώσεων του γενικού τύπου XCH2Y, όπου X,Y ηλεκτραρνητικές ομάδες όπως π.χ. κυανομάδα (CN), καρβαλκοξυομάδα (COOR), έχουμε την αντίδραση Knoevenagel[19]:

 

Επίδραση φωσφοροϋλιδίωνΕπεξεργασία

Με επίδραση φωσφοροϋλιδίων [Ph3P+C-(R)R'] έχουμε τη λεγόμενη αντίδραση Wittig, με την οποία παράγεται 1,1-διαλκυλοπεντένιο-1[20]:

 

Προσθήκη διαφόρων πυρηνόφιλων αντιδραστηρίωνΕπεξεργασία

Είναι δυνατή η προσθήκη διαφόρων πυρηνόφιλων αντιδραστηρίων στο διπλό δεσμό C=O που περιέχει η βουτανάλη. Π.χ.:[21]:

1. Με προσθήκη υδροκυανίου παράγεται αρχικά 2-υδροξυπεντανονιτρίλιο, από το οποίο με υδρόλυση μπορεί να παραχθεί 2-υδροξυπεντανικό οξύ:

 

2. Με προσθήκη όξινου θειικού νατρίου παράγεται 1-υδροξυ-1-βουτανοσουλφονικό οξύ:

 

3. Με προσθήκη αλκυλομαγνησιοαλογονιδίου (RMgX) παράγεται 1-αλκυλο-1-βουτανόλη:

 

4. Με προσθήκη πενταχλωριούχου φωσφόρου παράγεται 1,1-διχλωροβουτάνιο:

 

ΑλογόνωσηΕπεξεργασία

Με επίδραση αλογόνου (X2) έχουμε προσθήκη του στην ταυτομερή 1-βουτεν-1-όλη. Παράγεται αρχικά η ασταθής 1,2-διαλο-1-βουτανόλη που αφυδραλογονώνεται σχηματίζοντας τελικά 2-αλοβουτανάλη[22]:

 

Επίδραση υδραζωτικού οξέοςΕπεξεργασία

Με επίδραση υδραζωτικού οξέος (αντίδραση Achmidt) παράγεται βουτανονιτρίλιο και προπυλαμινομεθανάλη[23]:

 

Προσθήκη αλκοολώνΕπεξεργασία

Με προσθήκη αλκοόλης (ROH) παράγεται αρχικά 1-αλκοξυ-1-βουτανόλη και έπειτα, με περίσσεια αλκοόλης 1,1-διαλκοξυβουτάνιο[24]:

 

Αντίδραση StrackerΕπεξεργασία

Με επίδραση υδροκυανίου (HCN) και αμμωνίας (NH3) σε βουτανάλη παράγεται αρχικά 2-αμινοπεντανονιτρίλιο και στη συνέχεια, με υδρόλυση, 2-αμινοπεντανικό οξύ (ένα μη πρωτεϊνικό αμινοξύ)[25]:

 

Φωτοχημική προσθήκη σε αλκένιαΕπεξεργασία

Με επίδραση βουτανάλης σε αιθένιο σχηματίζεται φωτοχημικά 2-προπυλοξετάνιο (Αντίδραση Paterno–Büchi)[26][27]:

   

Επίδραση καρβενίωνΕπεξεργασία

Παρεμβολή καρβενίων, π.χ. με μεθυλενίου παράγονται πεντανάλη, 2-μεθυλοβουτανάλη, 3-μεθυλοβουτανάλη, 2-πεντανόνη και προπυλοξιράνιο[28]:

 
  

Αναφορές και σημειώσειςΕπεξεργασία

  1. Kniel, Ludwig (1980). Ethylene, keystone to the petrochemical industry. New York: M. Dekker. ISBN 0-8247-6914-7.  Unknown parameter |coauthors= ignored (|author= suggested) (βοήθεια)
  2. Boy Cornils, Richard W. Fischer, Christian Kohlpaintner "Butanals" in Ullmann's Encyclopedia of Industrial Chemistry, 2000, Wiley-VCH, Weinheim. doi:10.1002/14356007.a04_447.
  3. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.216, §9.2.1.
  4. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.216, §9.2.2.
  5. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.216, §9.2.3.
  6. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.216, §9.2.4.
  7. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.216, §9.2.6.
  8. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.1.
  9. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.2.
  10. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.3α.
  11. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.221, §9.6.1,2.
  12. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.4.
  13. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.5α.
  14. 14,0 14,1 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.5β.
  15. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218-219, §9.5.6.
  16. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.219, §9.5.7.
  17. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.219, §9.5.8. και SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, σελ. 268, §15.3.8
  18. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.219, §9.5.10.
  19. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.219, §9.5.9.
  20. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.219, §9.5.11.
  21. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.220, §9.5.12.
  22. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.220, §9.5.13.
  23. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.220, §9.5.15.
  24. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.221, §9.6.3.
  25. «Ασκήσεις και προβλήματα Οργανικής Χημείας» Ν. Α. Πετάση 1982, σελ. 329, §14.2.2.
  26. E. Paterno, G. Chieffi (1909). «.». Gazz. Chim. Ital. 39: 341. 
  27. G. Büchi, Charles G. Inman, and E. S. Lipinsky (1954). «Light-catalyzed Organic Reactions. I. The Reaction of Carbonyl Compounds with 2-Methyl-2-butene in the Presence of Ultraviolet Light». Journal of the American Chemical Society 76 (17): 4327–4331. doi:10.1021/ja01646a024. 
  28. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 155, §6.7.3.

ΠηγέςΕπεξεργασία

  • Γ. Βάρβογλη, Ν. Αλεξάνδρου, Οργανική Χημεία, Αθήνα 1972
  • Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991
  • SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999
  • Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982
  • Δημήτριου Ν. Νικολαΐδη: Ειδικά μαθήματα Οργανικής Χημείας, Θεσσαλονίκη 1983.